login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A109697 Number of partitions of n into parts each equal to 1 mod 5. 10
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6, 7, 7, 7, 8, 10, 11, 12, 12, 13, 15, 17, 18, 19, 20, 23, 26, 28, 29, 31, 34, 38, 41, 43, 45, 50, 55, 60, 63, 66, 71, 79, 85, 90, 94, 101, 110, 120, 127, 133, 141, 153, 165, 176, 184, 195, 210, 227, 241, 254, 267, 286, 307, 327 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..10000

FORMULA

G.f.: 1/product(1-x^(1+5j), j=0..infinity). - Emeric Deutsch, Mar 30 2006

a(n) ~ Gamma(1/5) * exp(Pi*sqrt(2*n/15)) / (2^(8/5) * 3^(1/10) * 5^(2/5) * Pi^(4/5) * n^(3/5)) * (1 - (3*sqrt(3/10)/(5*Pi) + Pi/(120*sqrt(30))) / sqrt(n)). - Vaclav Kotesovec, Feb 27 2015, extended Jan 24 2017

a(n) = (1/n)*Sum_{k=1..n} A284097(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017

EXAMPLE

a(11)=3 since 11 = 11 = 6+1+1+1+1+1 = 1+1+1+1+1+1+1+1+1+1+1

MAPLE

g:=1/product(1-x^(1+5*j), j=0..25): gser:=series(g, x=0, 85): seq(coeff(gser, x, n), n=0..80); # Emeric Deutsch, Mar 30 2006

MATHEMATICA

Table[Count[IntegerPartitions[n], _?(Union[Mod[#, 5]]=={1}&)], {n, 0, 75}] (* Harvey P. Dale, Oct 08 2011 *)

CROSSREFS

Cf. A000041, A003105, A284097.

Cf. similar sequences of number of partitions of n into parts congruent to 1 mod m: A000009 (m=2), A035382 (m=3), A035451 (m=4), this sequence (m=5), A109701 (m=6), A109703 (m=7), A277090 (m=8).

Sequence in context: A025783 A025780 A199121 * A103373 A038539 A275891

Adjacent sequences:  A109694 A109695 A109696 * A109698 A109699 A109700

KEYWORD

nonn

AUTHOR

Erich Friedman, Aug 07 2005

EXTENSIONS

More terms from Emeric Deutsch, Mar 30 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 07:05 EDT 2018. Contains 316276 sequences. (Running on oeis4.)