login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109699
Number of partitions of n into parts each equal to 3 mod 5.
4
1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 3, 2, 2, 4, 2, 4, 4, 3, 5, 4, 5, 6, 5, 7, 6, 8, 8, 7, 11, 9, 10, 13, 10, 14, 14, 14, 17, 16, 19, 19, 20, 24, 21, 27, 27, 27, 33, 30, 35, 38, 36, 44, 42, 47, 51, 50, 58, 57, 63, 68, 66, 79, 76, 82, 92, 88, 101, 104, 107, 120
OFFSET
0,17
LINKS
FORMULA
G.f.: 1/product(1-x^(3+5j), j=0..infinity). - Emeric Deutsch, Mar 30 2006
a(n) ~ Gamma(3/5) * exp(Pi*sqrt(2*n/15)) / (2^(9/5) * 3^(3/10) * 5^(1/5) * Pi^(2/5) * n^(4/5)) * (1 + (11*Pi/(120*sqrt(30)) - 6*sqrt(6/5)/(5*Pi)) / sqrt(n)). - Vaclav Kotesovec, Feb 27 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284281(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 24 2017
EXAMPLE
a(21)=3 since 21 = 18+3 = 13+8 = 3+3+3+3+3+3+3
MAPLE
g:=1/product(1-x^(3+5*j), j=0..25): gser:=series(g, x=0, 85): seq(coeff(gser, x, n), n=0..80); # Emeric Deutsch, Mar 30 2006
MATHEMATICA
nmax=100; CoefficientList[Series[Product[1/(1-x^(5*k+3)), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 27 2015 *)
Join[{1}, Table[Length[Select[IntegerPartitions[n], Union[Mod[#, 5]]=={3}&]], {n, 80}]] (* Harvey P. Dale, Dec 01 2024 *)
PROG
(PARI) Vec(prod(k=0, 100, 1/(1 - x^(5*k + 3))) + O(x^111)) \\ Indranil Ghosh, Mar 24 2017
CROSSREFS
Cf. A284281.
Sequence in context: A097368 A271900 A194083 * A301563 A330896 A328294
KEYWORD
nonn
AUTHOR
Erich Friedman, Aug 07 2005
EXTENSIONS
More terms from Emeric Deutsch, Mar 30 2006
STATUS
approved