login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109701
Number of partitions of n into parts each equal to 1 mod 6.
11
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 5, 6, 7, 7, 7, 7, 8, 10, 11, 12, 12, 12, 13, 15, 17, 18, 19, 19, 20, 23, 26, 28, 29, 30, 31, 34, 38, 41, 43, 44, 46, 50, 55, 60, 63, 65, 67, 72, 79, 85, 90, 93, 96, 102, 111, 120, 127, 132, 136, 143, 154, 166, 176, 183, 189, 198
OFFSET
0,8
COMMENTS
Euler transform of period 6 sequence [ 1, 0, 0, 0, 0, 0, ...]. - Kevin T. Acres, Apr 28 2018
LINKS
FORMULA
G.f.: 1/Product_{j >= 0} (1-x^(1+6j)). - Emeric Deutsch, Apr 14 2006
a(n) ~ Gamma(1/6) * exp(Pi*sqrt(n)/3) / (4 * sqrt(3) * Pi^(5/6) * n^(7/12)) * (1 - (7/(24*Pi) + Pi/144) / sqrt(n)). - Vaclav Kotesovec, Feb 27 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284098(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017
G.f.: Sum_{k>=0} x^k / Product_{j=1..k} (1 - x^(6*j)). - Ilya Gutkovskiy, Jul 17 2019
EXAMPLE
a(10)=2 since 10 = 7+1+1+1 = 1+1+1+1+1+1+1+1+1+1
MAPLE
g:=1/product(1-x^(1+6*j), j=0..20): gser:=series(g, x=0, 77): seq(coeff(gser, x, n), n=0..74); # Emeric Deutsch, Apr 14 2006
MATHEMATICA
nmax=100; CoefficientList[Series[Product[1/(1-x^(6*k+1)), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 27 2015 *)
CROSSREFS
Cf. A284098.
Cf. similar sequences of number of partitions of n into parts congruent to 1 mod m: A000009 (m=2), A035382 (m=3), A035451 (m=4), A109697 (m=5), this sequence (m=6), A109703 (m=7), A277090 (m=8).
Sequence in context: A374032 A317245 A332277 * A124751 A103374 A208251
KEYWORD
nonn
AUTHOR
Erich Friedman, Aug 07 2005
EXTENSIONS
Changed offset to 0 and added a(0)=1 by Vaclav Kotesovec, Feb 27 2015
STATUS
approved