The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A103374 a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = a(7) = 1 and for n>7: a(n) = a(n-6) + a(n-7). 16
 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 5, 7, 8, 8, 8, 8, 9, 12, 15, 16, 16, 16, 17, 21, 27, 31, 32, 32, 33, 38, 48, 58, 63, 64, 65, 71, 86, 106, 121, 127, 129, 136, 157, 192, 227, 248, 256, 265, 293, 349, 419, 475, 504, 521, 558, 642, 768, 894, 979, 1025, 1079 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,8 COMMENTS k=6 case of the family of sequences whose k=1 case is the Fibonacci sequence A000045, k=2 case is the Padovan sequence A000931 (offset so as to begin 1,1,1), k=3 case is A079398 (offset so as to begin 1,1,1,1), k=4 case is A103372 and k=5 case is A103373. The general case for integer k>1 is defined: a(1) = a(2) = ... = a(k+1) and for n>(k+1) a(n) = a(n-k) + a(n-[k+1]). For this k=6 case, the ratio of successive terms a(n)/a(n-1) approaches the unique positive root of the characteristic polynomial: x^7 - x - 1 = 0. This is the real constant 1.1127756842787054706297040205710929356068592718552836814857016280071663325.... The sequence of prime values in this k=6 case is A103384; the sequence of semiprime values in this k=6 case is A103394. REFERENCES Zanten, A. J. van, "The golden ratio in the arts of painting, building and mathematics", Nieuw Archief voor Wiskunde, 4 (17) (1999) 229-245. LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Richard Padovan, Dom Hans van der Laan and the Plastic Number. J.-P. Allouche and T. Johnson, Narayana's Cows and Delayed Morphisms E. S. Selmer, On the irreducibility of certain trinomials, Math. Scand., 4 (1956) 287-302. J. Shallit, A generalization of automatic sequences, Theoretical Computer Science, 61 (1988) 1-16. Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1,1). FORMULA G.f.: x*(1+x)*(1+x+x^2)*(x^2-x+1) / ( 1-x^6-x^7 ). - R. J. Mathar, Aug 26 2011 EXAMPLE a(32) = 17 because a(32) = a(32-6) + a(32-7) = a(26) + a(25) = 9 + 8 = 17. MATHEMATICA k = 6; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Array[a, 70] RecurrenceTable[{a[n] == a[n - 6] + a[n - 7], a == a == a == a == a == a == a == 1}, a, {n, 70}] (* or *) Rest@ CoefficientList[Series[-x (1 + x) (1 + x + x^2) (x^2 - x + 1)/(-1 + x^6 + x^7), {x, 0, 70}], x] (* Michael De Vlieger, Oct 03 2016 *) PROG (PARI) a(n)=([0, 1, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0; 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 1; 1, 1, 0, 0, 0, 0, 0]^(n-1)*[1; 1; 1; 1; 1; 1; 1])[1, 1] \\ Charles R Greathouse IV, Oct 03 2016 (PARI) x='x+O('x^50); Vec(x*(1+x)*(1+x+x^2)*(x^2-x+1)/(1-x^6-x^7)) \\ G. C. Greubel, May 01 2017 CROSSREFS Cf. A000045, A000931, A079398, A103372-A103381, A103384, A103394. Sequence in context: A317245 A109701 A124751 * A208251 A241087 A137722 Adjacent sequences:  A103371 A103372 A103373 * A103375 A103376 A103377 KEYWORD nonn,easy AUTHOR Jonathan Vos Post, Feb 03 2005 EXTENSIONS Edited by Ray Chandler and Robert G. Wilson v, Feb 06 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 08:09 EST 2020. Contains 331104 sequences. (Running on oeis4.)