|
|
A241087
|
|
Number of partitions p of n into distinct parts such that max(p) = 2*(number of parts of p).
|
|
7
|
|
|
0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 4, 6, 5, 6, 6, 7, 7, 9, 10, 12, 13, 15, 16, 18, 19, 20, 23, 25, 28, 30, 35, 38, 43, 46, 51, 55, 61, 64, 72, 76, 84, 91, 101, 109, 120, 130, 142, 155, 168, 181, 196, 212, 228, 248, 266, 288, 311, 337
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,12
|
|
LINKS
|
|
|
EXAMPLE
|
a(15) counts these 2 partitions: 8421, 654.
|
|
MATHEMATICA
|
z = 40; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
Table[Count[f[n], p_ /; Max[p] < 2*Length[p]], {n, 0, z}] (* A241085 *)
Table[Count[f[n], p_ /; Max[p] <= 2*Length[p]], {n, 0, z}] (* A241086 *)
Table[Count[f[n], p_ /; Max[p] == 2*Length[p]], {n, 0, z}] (* A241087 *)
Table[Count[f[n], p_ /; Max[p] >= 2*Length[p]], {n, 0, z}] (* A241088 *)
Table[Count[f[n], p_ /; Max[p] > 2*Length[p]], {n, 0, z}] (* A241089 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|