OFFSET
1,10
COMMENTS
k=8 case of the family of sequences whose k=1 case is the Fibonacci sequence A000045, k=2 case is the Padovan sequence A000931 (offset so as to begin 1,1,1), k=3 case is A079398 (offset so as to begin 1,1,1,1), k=4 case is A103372, k=5 case is A103373, k=6 case is A103374 and k=7 case is A103375.
The general case for integer k>1 is defined: a(1) = a(2) = ... = a(k+1) and for n>(k+1) a(n) = a(n-k) + a(n-[k+1]).
For this k=8 case, the ratio of successive terms a(n)/a(n-1) approaches the unique positive root of the characteristic polynomial: x^9 - x - 1 = 0. This is the real constant (to 50 digits accuracy): 1.0850702454914508283368958640973142340506536310308 = A230162. Note that x = (1 + x)^(1/9) = (1 + (1 + (1 + ...)^(1/9))^(1/9))^(1/9).
REFERENCES
Zanten, A. J. van, "The golden ratio in the arts of painting, building and mathematics", Nieuw Archief voor Wiskunde, 4 (17) (1999) 229-245.
LINKS
J.-P. Allouche and T. Johnson, Narayana's Cows and Delayed Morphisms
Richard Padovan, Dom Hans van der Laan and the Plastic Number.
E. S. Selmer, On the irreducibility of certain trinomials, Math. Scand., 4 (1956) 287-302.
J. Shallit, A generalization of automatic sequences, Theoretical Computer Science, 61 (1988), 1-16.
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,1,1).
FORMULA
G.f.: x*(1+x)*(1+x^2)*(1+x^4)/(1-x^8-x^9). - R. J. Mathar, Dec 14 2009
a(1)=1, a(2)=1, a(3)=1, a(4)=1, a(5)=1, a(6)=1, a(7)=1, a(8)=1, a(9)=1, a(n)=a(n-8)+a(n-9). - Harvey P. Dale, May 07 2015
EXAMPLE
a(93) = 1200 because a(93) = a(93-8) + a(93-9) = a(85) + a(84) = 642 + 558.
MATHEMATICA
k = 8; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Array[a, 76]
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 1, 1}, 80] (* Harvey P. Dale, May 07 2015 *)
PROG
(PARI) a(n)=([0, 1, 0, 0, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 0, 0, 1, 0, 0, 0; 0, 0, 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 0, 0, 1; 1, 1, 0, 0, 0, 0, 0, 0, 0]^(n-1)*[1; 1; 1; 1; 1; 1; 1; 1; 1])[1, 1] \\ Charles R Greathouse IV, Oct 03 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Feb 05 2005
EXTENSIONS
Edited by Ray Chandler, Feb 10 2005
STATUS
approved