login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103379
a(n) = a(n-11) + a(n-12).
10
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 12, 15, 16, 16, 16, 16, 16, 16, 16, 16, 17, 21, 27, 31, 32, 32, 32, 32, 32, 32, 32, 33, 38, 48, 58, 63, 64, 64, 64, 64, 64, 64, 65, 71, 86, 106, 121, 127
OFFSET
1,13
FORMULA
For n>12: a(n) = a(n-11) + a(n-12). a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = a(7) = a(8) = a(9) = a(10) = a(11) = a(12) = 1.
G.f.: x*(1-x^11) / ((1-x)*(1-x^11-x^12)). - Colin Barker, Mar 26 2013
MAPLE
A103379 := proc(n) option remember ; if n <= 12 then 1; else procname(n-11)+procname(n-12) ; fi; end: for n from 1 to 120 do printf("%d, ", A103379(n)) ; od: # R. J. Mathar, Aug 30 2008
MATHEMATICA
SemiprimeQ[n_]:=Plus@@FactorInteger[n][[All, 2]]?2; k11; Do[a[n]=1, {n, k+1}]; a[n_]:=a[n]=a[n-k]+a[n-k-1]; A103379=Array[a, 100] A103389=Union[Select[Array[a, 1000], PrimeQ]] A103399=Union[Select[Array[a, 300], SemiprimeQ]] N[Solve[x^12 - x - 1 == 0, x], 111][[2]] (* Ray Chandler and Robert G. Wilson v *)
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 100] (* Harvey P. Dale, Jan 31 2015 *)
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Feb 15 2005
EXTENSIONS
Corrected from a(11) on by R. J. Mathar, Aug 30 2008
STATUS
approved