login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036450
a(n) = d(d(d(n))), the 3rd iterate of the number-of-divisors function with an initial value of n.
15
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 4, 2, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 4, 2, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 4, 2, 2, 2, 3, 2, 4, 2, 3, 2, 2, 2, 4, 2, 3, 3, 2, 2, 3, 2, 3, 3
OFFSET
1,2
COMMENTS
The iterated d function rapidly converges to the fixed point 2.
From N. J. A. Sloane, Jun 02 2014: (Start)
The fourth iterate begins as follows:
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ... . (End)
REFERENCES
S. Ramanujan, Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962, p. 128. - N. J. A. Sloane, Jun 02 2014
LINKS
Enrique Pérez Herrero, Table of n, a(n) for n = 1..2000
R. Bellman and H. N. Shapiro, On a problem in additive number theory, Annals Math., 49 (1948), 333-340.
EXAMPLE
n = 5040, d(5040) = 60, d(d(5040)) = d(60) = 12 and a(5040) = d(12) = 6.
MATHEMATICA
f[n_]:=Length[Divisors[n]]; Table[Nest[f, n, 3], {n, 6!}] (* Vladimir Joseph Stephan Orlovsky, Mar 10 2010 *)
PROG
(PARI) a(n)=numdiv(numdiv(numdiv(n))) \\ Charles R Greathouse IV, Nov 16 2022
(Python)
from sympy import divisor_count
def A036450(n): return divisor_count(divisor_count(divisor_count(n))) # Chai Wah Wu, Nov 17 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved