Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #43 Sep 01 2024 02:47:05
%S 1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,
%T 5,7,8,8,8,8,8,8,8,8,8,9,12,15,16,16,16,16,16,16,16,16,17,21,27,31,32,
%U 32,32,32,32,32,32,33,38,48,58,63,64,64,64,64,64,64,65,71,86,106,121,127
%N a(n) = a(n-11) + a(n-12).
%H <a href="/index/Rec/order_12">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,0,0,1,1).
%F For n>12: a(n) = a(n-11) + a(n-12). a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = a(7) = a(8) = a(9) = a(10) = a(11) = a(12) = 1.
%F G.f.: x*(1-x^11) / ((1-x)*(1-x^11-x^12)). - _Colin Barker_, Mar 26 2013
%p A103379 := proc(n) option remember ; if n <= 12 then 1; else procname(n-11)+procname(n-12) ; fi; end: for n from 1 to 120 do printf("%d,",A103379(n)) ; od: # _R. J. Mathar_, Aug 30 2008
%t SemiprimeQ[n_]:=Plus@@FactorInteger[n][[All, 2]]?2; k11; Do[a[n]=1, {n, k+1}]; a[n_]:=a[n]=a[n-k]+a[n-k-1]; A103379=Array[a, 100] A103389=Union[Select[Array[a, 1000], PrimeQ]] A103399=Union[Select[Array[a, 300], SemiprimeQ]] N[Solve[x^12 - x - 1 == 0, x], 111][[2]] (* _Ray Chandler_ and _Robert G. Wilson v_ *)
%t LinearRecurrence[{0,0,0,0,0,0,0,0,0,0,1,1},{1,1,1,1,1,1,1,1,1,1,1,1},100] (* _Harvey P. Dale_, Jan 31 2015 *)
%Y Cf. A079398, A103372-A103378, A103380, A103389, A103399.
%K easy,nonn
%O 1,13
%A _Jonathan Vos Post_, Feb 15 2005
%E Corrected from a(11) on by _R. J. Mathar_, Aug 30 2008