login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109703
Number of partitions of n into parts each equal to 1 mod 7.
8
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 5, 6, 7, 7, 7, 7, 7, 8, 10, 11, 12, 12, 12, 12, 13, 15, 17, 18, 19, 19, 19, 20, 23, 26, 28, 29, 30, 30, 31, 34, 38, 41, 43, 44, 45, 46, 50, 55, 60, 63, 65, 66, 68, 72, 79, 85, 90, 93, 95, 97, 103, 111, 120, 127, 132, 135
OFFSET
0,9
LINKS
FORMULA
G.f.: 1/product(1-x^(1+7j), j=0..infinity). - Emeric Deutsch, Apr 14 2006
a(n) ~ Gamma(1/7) * exp(Pi*sqrt(2*n/21)) / (2^(11/7) * 3^(1/14) * 7^(3/7) * Pi^(6/7) * n^(4/7)) * (1 - (2*sqrt(6/7)/(7*Pi) + 13*Pi/(168*sqrt(42))) / sqrt(n)). - Vaclav Kotesovec, Feb 27 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284099(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017
G.f.: Sum_{k>=0} x^k / Product_{j=1..k} (1 - x^(7*j)). - Ilya Gutkovskiy, Jul 17 2019
EXAMPLE
a(15)=3 because we have 15=8+1+1+1+1+1+1+1=1+1+1+1+1+1+1+1+1+1+1+1+1+1+1.
MAPLE
g:=1/product(1-x^(1+7*j), j=0..20): gser:=series(g, x=0, 80): seq(coeff(gser, x, n), n=0..77); # Emeric Deutsch, Apr 14 2006
MATHEMATICA
nmax=100; CoefficientList[Series[Product[1/(1-x^(7*k+1)), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 27 2015 *)
CROSSREFS
Cf. A284099.
Cf. similar sequences of number of partitions of n into parts congruent to 1 mod m: A000009 (m=2), A035382 (m=3), A035451 (m=4), A109697 (m=5), A109701 (m=6), this sequence (m=7), A277090 (m=8).
Sequence in context: A275150 A303904 A173021 * A103375 A285758 A340959
KEYWORD
nonn
AUTHOR
Erich Friedman, Aug 07 2005
EXTENSIONS
Changed offset to 0 and added a(0)=1 by Vaclav Kotesovec, Feb 27 2015
STATUS
approved