The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A303904 Expansion of (1/(1 - x))*Product_{k>=1} (1 + x^(k^3)). 0
 1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 10, 10, 10, 10, 10, 10, 10, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Partial sums of A279329. LINKS FORMULA a(n) ~ exp(2^(7/4) * ((2^(1/3) - 1) * Gamma(1/3) * Zeta(4/3))^(3/4) * n^(1/4) / 3^(3/2)) * 3^(5/4) / (2^(15/8) * sqrt(Pi) * ((2^(1/3) - 1) * Gamma(1/3) * Zeta(4/3))^(3/8) * n^(1/8)). - Vaclav Kotesovec, May 04 2018 MAPLE b:= proc(n, i) option remember; `if`(n<0, 0,      `if`(n=0, 1, `if`(n>i^2*(i+1)^2/4, 0, (t->        b(t, min(t, i-1)))(n-i^3)+b(n, i-1))))     end: a:= proc(n) option remember; `if`(n<0, 0,        b(n, iroot(n, 3))+a(n-1))     end: seq(a(n), n=0..100);  # Alois P. Heinz, May 02 2018 MATHEMATICA nmax = 91; CoefficientList[Series[1/(1 - x) Product[1 + x^k^3, {k, 1, Floor[nmax^(1/3) + 1]}], {x, 0, nmax}], x] CROSSREFS Cf. A000578, A003997, A036469, A038348, A248801, A279329, A302834. Sequence in context: A025845 A029393 A275150 * A173021 A109703 A103375 Adjacent sequences:  A303901 A303902 A303903 * A303905 A303906 A303907 KEYWORD nonn AUTHOR Ilya Gutkovskiy, May 02 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 14 04:22 EDT 2021. Contains 343872 sequences. (Running on oeis4.)