login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003997
Sums of distinct positive cubes.
14
1, 8, 9, 27, 28, 35, 36, 64, 65, 72, 73, 91, 92, 99, 100, 125, 126, 133, 134, 152, 153, 160, 161, 189, 190, 197, 198, 216, 217, 224, 225, 243, 244, 251, 252, 280, 281, 288, 289, 307, 308, 315, 316, 341, 342, 343, 344, 349, 350, 351, 352, 368, 369, 370, 371
OFFSET
1,2
COMMENTS
12758 is the largest of 2788 positive integers not in this sequence. - Jud McCranie, Dec 11 1999
REFERENCES
D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, entry 12758.
FORMULA
For n > 9970, a(n) = n + 2788. - Charles R Greathouse IV, Sep 02 2011
MAPLE
GF := series( (1+x)*(1+x^8)*(1+x^27)*(1+x^64)*(1+x^125)*(1+x^216)*(1+x^343)*(1+x^512)*(1+x^729)*(1+x^1000), x, 11^3); # Edited by M. F. Hasler, May 01 2020
A003997_upto := n -> map(degree, {op(convert(series(product(1 + x^(k^3), k = 1 .. floor(root(n, 3)))-1, x, n+1), `+`))}); # M. F. Hasler, May 01 2020;
MATHEMATICA
lim = 8; s = {0}; Do[s = Union[s, s + n^3], {n, lim}]; Select[s, 0 < # <= lim^3 &] (* T. D. Noe, Jul 10 2012 *)
PROG
(PARI) list(lim)={
lim\=1;
my(lm=min(lim+1, 12758), v=List(), P);
P=prod(n=1, lm^(1/3), 1+x^(n^3), 1+O(x^lm));
for(n=1, lm-1, if(polcoeff(P, n), listput(v, n)));
if(lim>12758, concat(Vec(v), vector(lim-12758, i, i+12758)), Vec(v))
}; \\ Charles R Greathouse IV, Sep 02 2011
(PARI) select( is_A003997(n, m=n)={m^3>n&&m=sqrtnint(n, 3); n==m^3||while(m>1, is_A003997(n-m^3, m--)&&return(1))}, [1..400]) \\ M. F. Hasler, Apr 21 2020
CROSSREFS
Complement of A001476. Cf. A003995.
Sequence in context: A305336 A042311 A371629 * A114090 A351959 A217843
KEYWORD
nonn,easy
EXTENSIONS
Definition clarified by Jeppe Stig Nielsen, Jan 27 2015
STATUS
approved