OFFSET
1,2
COMMENTS
12758 is the largest of 2788 positive integers not in this sequence. - Jud McCranie, Dec 11 1999
REFERENCES
D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, entry 12758.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
R. Sprague, Über Zerlegungen in n-te Potenzen mit lauter verschiedenen Grundzahlen, Math. Z. 51, (1948), 466-468.
Index entries for linear recurrences with constant coefficients, signature (2,-1).
FORMULA
For n > 9970, a(n) = n + 2788. - Charles R Greathouse IV, Sep 02 2011
MAPLE
GF := series( (1+x)*(1+x^8)*(1+x^27)*(1+x^64)*(1+x^125)*(1+x^216)*(1+x^343)*(1+x^512)*(1+x^729)*(1+x^1000), x, 11^3); # Edited by M. F. Hasler, May 01 2020
A003997_upto := n -> map(degree, {op(convert(series(product(1 + x^(k^3), k = 1 .. floor(root(n, 3)))-1, x, n+1), `+`))}); # M. F. Hasler, May 01 2020;
MATHEMATICA
lim = 8; s = {0}; Do[s = Union[s, s + n^3], {n, lim}]; Select[s, 0 < # <= lim^3 &] (* T. D. Noe, Jul 10 2012 *)
PROG
(PARI) list(lim)={
lim\=1;
my(lm=min(lim+1, 12758), v=List(), P);
P=prod(n=1, lm^(1/3), 1+x^(n^3), 1+O(x^lm));
for(n=1, lm-1, if(polcoeff(P, n), listput(v, n)));
if(lim>12758, concat(Vec(v), vector(lim-12758, i, i+12758)), Vec(v))
}; \\ Charles R Greathouse IV, Sep 02 2011
(PARI) select( is_A003997(n, m=n)={m^3>n&&m=sqrtnint(n, 3); n==m^3||while(m>1, is_A003997(n-m^3, m--)&&return(1))}, [1..400]) \\ M. F. Hasler, Apr 21 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Definition clarified by Jeppe Stig Nielsen, Jan 27 2015
STATUS
approved