login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sums of distinct positive cubes.
14

%I #51 Oct 24 2023 06:10:47

%S 1,8,9,27,28,35,36,64,65,72,73,91,92,99,100,125,126,133,134,152,153,

%T 160,161,189,190,197,198,216,217,224,225,243,244,251,252,280,281,288,

%U 289,307,308,315,316,341,342,343,344,349,350,351,352,368,369,370,371

%N Sums of distinct positive cubes.

%C 12758 is the largest of 2788 positive integers not in this sequence. - _Jud McCranie_, Dec 11 1999

%D D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, entry 12758.

%H T. D. Noe, <a href="/A003997/b003997.txt">Table of n, a(n) for n = 1..10000</a>

%H R. Sprague, <a href="http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN002380951">Über Zerlegungen in n-te Potenzen mit lauter verschiedenen Grundzahlen</a>, Math. Z. 51, (1948), 466-468.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).

%F For n > 9970, a(n) = n + 2788. - _Charles R Greathouse IV_, Sep 02 2011

%p GF := series( (1+x)*(1+x^8)*(1+x^27)*(1+x^64)*(1+x^125)*(1+x^216)*(1+x^343)*(1+x^512)*(1+x^729)*(1+x^1000), x, 11^3); # Edited by _M. F. Hasler_, May 01 2020

%p A003997_upto := n -> map(degree,{op(convert(series(product(1 + x^(k^3), k = 1 .. floor(root(n,3)))-1, x, n+1),`+`))}); # _M. F. Hasler_, May 01 2020;

%t lim = 8; s = {0}; Do[s = Union[s, s + n^3], {n, lim}]; Select[s, 0 < # <= lim^3 &] (* _T. D. Noe_, Jul 10 2012 *)

%o (PARI) list(lim)={

%o lim\=1;

%o my(lm=min(lim+1,12758), v=List(), P);

%o P=prod(n=1,lm^(1/3),1+x^(n^3),1+O(x^lm));

%o for(n=1,lm-1,if(polcoeff(P,n),listput(v,n)));

%o if(lim>12758,concat(Vec(v),vector(lim-12758,i,i+12758)),Vec(v))

%o }; \\ _Charles R Greathouse IV_, Sep 02 2011

%o (PARI) select( is_A003997(n,m=n)={m^3>n&&m=sqrtnint(n,3);n==m^3||while(m>1,is_A003997(n-m^3,m--)&&return(1))}, [1..400]) \\ _M. F. Hasler_, Apr 21 2020

%Y Complement of A001476. Cf. A003995.

%K nonn,easy

%O 1,2

%A _N. J. A. Sloane_

%E Definition clarified by _Jeppe Stig Nielsen_, Jan 27 2015