login
A351959
Composite k such that the primorial inflation of k is a sum of distinct primorial numbers.
2
8, 9, 27, 32, 40, 42, 115, 228, 252, 530, 575, 928, 1032, 1206, 2595, 5300, 5726, 9320, 10590, 14464, 17376, 21708, 22734, 23212, 25267, 26229, 37360, 38925, 42540, 72768, 80164, 92772, 171960, 220045, 277937, 325152, 372800, 374864, 390169, 404475, 405988, 417798, 421932, 456753, 475587, 686640
OFFSET
1,1
COMMENTS
Composite numbers k for which A108951(k) is in A276156.
Numbers k for which A324886(k) is a nonprime squarefree number (in A120944).
Question: Is A324886(k) always a semiprime, or could it have more than two distinct prime factors?
EXAMPLE
For the initial 14 terms, k and A049345(A108951(k)) are listed below:
8 -> 110,
9 -> 1100,
27 -> 10100,
32 -> 1010,
40 -> 11000,
42 -> 110000,
115 -> 11000000000,
228 -> 1100000000,
252 -> 1010000,
530 -> 110000000000000000,
575 -> 101000000000,
928 -> 110000000000,
1032 -> 1100000000000000,
1206 -> 110000000000000000000.
PROG
(PARI)
A034386(n) = prod(i=1, primepi(n), prime(i));
A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951
is_in_A276156(n) = { my(p=2); while(n, if((n%p)>1, return(0)); n = n\p; p = nextprime(1+p)); (1); };
isA351959(n) = (n>1 && !isprime(n) && is_in_A276156(A108951(n)));
CROSSREFS
Intersection of A002808 and A344591.
Sequence in context: A371629 A003997 A114090 * A217843 A139753 A046874
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 05 2022
STATUS
approved