login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004000
RATS: Reverse Add Then Sort the digits applied to previous term, starting with 1.
(Formerly M1137)
19
1, 2, 4, 8, 16, 77, 145, 668, 1345, 6677, 13444, 55778, 133345, 666677, 1333444, 5567777, 12333445, 66666677, 133333444, 556667777, 1233334444, 5566667777, 12333334444, 55666667777, 123333334444, 556666667777, 1233333334444, 5566666667777, 12333333334444
OFFSET
1,2
COMMENTS
It is conjectured that no matter what the starting term is, repeatedly applying RATS leads either to this sequence or into a cycle of finite length, such as those in A066710 and A066711.
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..2002 (first 200 terms from T. D. Noe)
R. K. Guy, Conway's RATS and other reversals, Amer. Math. Monthly, 96 (1989), 425-428.
Eric Weisstein's World of Mathematics, RATS Sequence.
FORMULA
Let a(n) = k, form m by Reversing the digits of k, Add m to k Then Sort the digits of the sum into increasing order to get a(n+1).
a(n+1) = A036839(a(n)). - Reinhard Zumkeller, Mar 14 2012
A010888(a(n)) = A153130(n-1). - Ivan N. Ianakiev, Nov 27 2014
a(2n-1) = (37 * 10^(n-3) + 3332)/3, n >= 11; a(2n) = (167 * 10^(n-3) + 3331)/3, n >= 10. - Jianing Song, May 06 2021
EXAMPLE
668 -> 668 + 866 = 1534 -> 1345.
MAPLE
read transforms; RATS := n -> digsort(n + digrev(n)); b := [1]; t := [1]; for n from 1 to 50 do t := RATS(t); b := [op(b), t]; od: b;
MATHEMATICA
NestList[FromDigits[Sort[IntegerDigits[#+FromDigits[Reverse[ IntegerDigits[#]]]]]]&, 1, 30] (* Harvey P. Dale, Nov 29 2011 *)
PROG
(Magma) [ n eq 1 select 1 else Seqint(Reverse(Sort(Intseq(p + Seqint(Reverse(Intseq(p))) where p is Self(n-1))))) : n in [1..10]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 20061
(Haskell)
a004000_list = iterate a036839 1 -- Reinhard Zumkeller, Mar 14 2012
(PARI) step(n)=fromdigits(vecsort(digits(n+fromdigits(Vecrev(digits(n)))))) \\ Charles R Greathouse IV, Jun 23 2017
(Python)
l = [0, 1]
for n in range(2, 51):
x = str(l[n - 1])
l.append(int(''.join(sorted(str(int(x) + int(x[::-1]))))))
print(l[1:]) # Indranil Ghosh, Jul 05 2017
KEYWORD
base,nonn,nice,easy
EXTENSIONS
Entry revised by N. J. A. Sloane, Jan 19 2002
STATUS
approved