Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M1137 #61 Feb 21 2023 07:33:42
%S 1,2,4,8,16,77,145,668,1345,6677,13444,55778,133345,666677,1333444,
%T 5567777,12333445,66666677,133333444,556667777,1233334444,5566667777,
%U 12333334444,55666667777,123333334444,556666667777,1233333334444,5566666667777,12333333334444
%N RATS: Reverse Add Then Sort the digits applied to previous term, starting with 1.
%C It is conjectured that no matter what the starting term is, repeatedly applying RATS leads either to this sequence or into a cycle of finite length, such as those in A066710 and A066711.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Alois P. Heinz, <a href="/A004000/b004000.txt">Table of n, a(n) for n = 1..2002</a> (first 200 terms from T. D. Noe)
%H R. K. Guy, <a href="http://www.jstor.org/stable/2325149">Conway's RATS and other reversals</a>, Amer. Math. Monthly, 96 (1989), 425-428.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RATSSequence.html">RATS Sequence</a>.
%F Let a(n) = k, form m by Reversing the digits of k, Add m to k Then Sort the digits of the sum into increasing order to get a(n+1).
%F a(n+1) = A036839(a(n)). - _Reinhard Zumkeller_, Mar 14 2012
%F A010888(a(n)) = A153130(n-1). - _Ivan N. Ianakiev_, Nov 27 2014
%F a(2n-1) = (37 * 10^(n-3) + 3332)/3, n >= 11; a(2n) = (167 * 10^(n-3) + 3331)/3, n >= 10. - _Jianing Song_, May 06 2021
%e 668 -> 668 + 866 = 1534 -> 1345.
%p read transforms; RATS := n -> digsort(n + digrev(n)); b := [1]; t := [1]; for n from 1 to 50 do t := RATS(t); b := [op(b),t]; od: b;
%t NestList[FromDigits[Sort[IntegerDigits[#+FromDigits[Reverse[ IntegerDigits[#]]]]]]&,1,30] (* _Harvey P. Dale_, Nov 29 2011 *)
%o (Magma) [ n eq 1 select 1 else Seqint(Reverse(Sort(Intseq(p + Seqint(Reverse(Intseq(p))) where p is Self(n-1))))) : n in [1..10]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 20061
%o (Haskell)
%o a004000_list = iterate a036839 1 -- _Reinhard Zumkeller_, Mar 14 2012
%o (PARI) step(n)=fromdigits(vecsort(digits(n+fromdigits(Vecrev(digits(n)))))) \\ _Charles R Greathouse IV_, Jun 23 2017
%o (Python)
%o l = [0, 1]
%o for n in range(2, 51):
%o x = str(l[n - 1])
%o l.append(int(''.join(sorted(str(int(x) + int(x[::-1]))))))
%o print(l[1:]) # _Indranil Ghosh_, Jul 05 2017
%Y Cf. A036839, A066710, A066711, A066713, A164338, A161593, A114611, A114612, A209878, A209879, A209880.
%K base,nonn,nice,easy
%O 1,2
%A _N. J. A. Sloane_
%E Entry revised by _N. J. A. Sloane_, Jan 19 2002