OFFSET
0,2
COMMENTS
Partial sums of A033461.
LINKS
Robert Israel, Table of n, a(n) for n = 0..10000
FORMULA
G.f.: (1-x)^(-1) * product(k>=1, 1 + x^(k^2)).
EXAMPLE
For n=5 the sets are {}, {1^2}, {2^2}, {1^2, 2^2} so a(5) = 4.
MAPLE
N:= 200: # to get a(0) to a(N)
g:= (1-x)^(-1)*mul(1 + x^(m^2), m=1 .. floor(sqrt(N))):
S:= series(g, x, N+1):
seq(coeff(S, x, j), j=0..N);
MATHEMATICA
CoefficientList[Series[(1 - x)^(-1) Product[1 + x^(k^2), {k, 50}], {x, 0, 50}], x] (* Vincenzo Librandi, Oct 15 2014 *)
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i^2>n, 0, b[n-i^2, i-1]]]]; Table[b[n, Floor[Sqrt[n]]], {n, 0, 100}] // Accumulate (* Jean-François Alcover, Apr 17 2019, after Alois P. Heinz in A033461 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert Israel, Oct 14 2014
STATUS
approved