login
A248801
Number of sets of nonzero squares with sum <= n
4
1, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6, 6, 6, 7, 8, 8, 9, 10, 10, 10, 11, 12, 12, 12, 12, 14, 16, 16, 16, 18, 20, 20, 20, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 30, 30, 32, 34, 34, 34, 36, 39, 40, 41, 43, 45, 46, 47, 48, 49, 50, 50, 52, 55, 56, 57, 61, 64, 64, 65
OFFSET
0,2
COMMENTS
Partial sums of A033461.
LINKS
FORMULA
G.f.: (1-x)^(-1) * product(k>=1, 1 + x^(k^2)).
EXAMPLE
For n=5 the sets are {}, {1^2}, {2^2}, {1^2, 2^2} so a(5) = 4.
MAPLE
N:= 200: # to get a(0) to a(N)
g:= (1-x)^(-1)*mul(1 + x^(m^2), m=1 .. floor(sqrt(N))):
S:= series(g, x, N+1):
seq(coeff(S, x, j), j=0..N);
MATHEMATICA
CoefficientList[Series[(1 - x)^(-1) Product[1 + x^(k^2), {k, 50}], {x, 0, 50}], x] (* Vincenzo Librandi, Oct 15 2014 *)
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i^2>n, 0, b[n-i^2, i-1]]]]; Table[b[n, Floor[Sqrt[n]]], {n, 0, 100}] // Accumulate (* Jean-François Alcover, Apr 17 2019, after Alois P. Heinz in A033461 *)
CROSSREFS
Cf. A033461.
Sequence in context: A087816 A072000 A157477 * A006949 A359536 A194814
KEYWORD
nonn
AUTHOR
Robert Israel, Oct 14 2014
STATUS
approved