

A157477


Number of values k < n for which k is a greedy sum of squares.


0



0, 1, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6, 6, 6, 7, 8, 8, 9, 10, 10, 10, 11, 12, 12, 12, 12, 13, 14, 14, 14, 15, 16, 16, 16, 16, 17, 18, 19, 20, 20, 20, 21, 22, 22, 22, 22, 23, 24, 24, 24, 25, 26, 26, 26, 27, 28, 28, 28, 28, 29, 30, 30, 30, 31, 32, 33, 34, 34, 34, 35, 36, 36, 36, 36, 37
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


LINKS



MAPLE

greeds := proc(n) local arem, a, j ; arem := n ; a := [] ; while arem > 0 do j := floor(sqrt(arem)) ; a := [op(a), j] ; arem := aremj^2 ; od: a ; end: isGreedS := proc(n) option remember; local L; L := greeds(n) ; RETURN( nops(L) = nops( convert(L, set)) ) ; end: a := proc(n) local resul, i ; resul := 0 ; for i from 0 to n1 do if isGreedS(i) then resul := resul+1 ; fi; od: resul ; end: seq(a(n), n=0..80) ;


MATHEMATICA

greeds[n_] := Module[{arem = n, a = {}, j}, While[arem > 0, j = Floor[Sqrt[arem]]; AppendTo[a, j]; arem = arem  j^2]; a];
isGreedS[n_] := isGreedS[n] = Module[{L = greeds[n]}, Length[L] == Length[Union[L]]];
a[n_] := Module[{resul = 0, i}, For[i = 0, i <= n1, i++, If[isGreedS[i], resul++]]; resul];


CROSSREFS



KEYWORD

easy,nonn


AUTHOR



STATUS

approved



