The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A157476 a(n) = 2048n^2 + 128n + 1. 3
 2177, 8449, 18817, 33281, 51841, 74497, 101249, 132097, 167041, 206081, 249217, 296449, 347777, 403201, 462721, 526337, 594049, 665857, 741761, 821761, 905857, 994049, 1086337, 1182721, 1283201, 1387777, 1496449, 1609217, 1726081, 1847041 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The identity (2048*n^2+128*n+1)^2-(16*n^2+n)*(512*n+16)^2=1 can be written as a(n)^2-A157474(n)*A157475(n)^2=1. [rewritten by Bruno Berselli, Aug 22 2011] This is the case s=4 of the identity (8*n^2*s^4+8*n*s^2+1)^2 - (n^2*s^2+n)*(8*n*s^3+4*s)^2 = 1. - Bruno Berselli, Jan 25 2012 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..10000 Vincenzo Librandi, X^2-AY^2=1 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA From Harvey P. Dale, Aug 15 2011: (Start) G.f.: x*(-x^2-1918*x-2177)/(x-1)^3. a(1)=2177, a(2)=8449, a(3)=18817, a(n)=3*a(n-1)-3*a(n-2)+a(n-3). (End) MATHEMATICA Table[2048n^2+128n+1, {n, 30}] (* or *) LinearRecurrence[{3, -3, 1}, {2177, 8449, 18817}, 30] (* Harvey P. Dale, Aug 15 2011 *) PROG (PARI) a(n)=2048*n^2+128*n+1 \\ Charles R Greathouse IV, Jun 17 2017 CROSSREFS Cf. A157474, A157475. Sequence in context: A185801 A170776 A250240 * A157853 A072141 A008918 Adjacent sequences: A157473 A157474 A157475 * A157477 A157478 A157479 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Mar 01 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 04:41 EDT 2024. Contains 372758 sequences. (Running on oeis4.)