login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157473
Primes p such that (p-2)^(1/3) -+ 2 are also primes.
0
2, 127, 91127, 328511, 1157627, 2146691, 12326393, 125751503, 693154127, 751089431, 1033364333, 2102071043, 2222447627, 2893640627, 3314613773, 3951805943, 6591796877, 9063964127, 13464285941, 16406426423, 19880486831
OFFSET
1,1
EXAMPLE
(127-2)^(1/3) - 2 = 3 and (127-2)^(1/3) + 2 = 7, so 127 is in the sequence.
MATHEMATICA
q=2; lst={}; Do[p=Prime[n]; r=(p-q)^(1/3)-q; u=(p-q)^(1/3)+q; If[PrimeQ[r]&&PrimeQ[u], AppendTo[lst, p]], {n, 4*9!}]; lst
lst = {}; p = 0; While[p < 2955, If[ PrimeQ[p - 2] && PrimeQ[p + 2] && PrimeQ[p^3 + 2], AppendTo[lst, p^3 + 2]]; p++ ]; lst (* Robert G. Wilson v, Mar 08 2009 *)
Select[Prime[Range[10^6]], AllTrue[Surd[#-2, 3]+{2, -2}, PrimeQ]&] (* The program generates the first 7 terms of the sequence. *) (* Harvey P. Dale, Aug 31 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(8)-a(21) from Robert G. Wilson v, Mar 08 2009
STATUS
approved