

A157475


a(n) = 512n + 16.


3



528, 1040, 1552, 2064, 2576, 3088, 3600, 4112, 4624, 5136, 5648, 6160, 6672, 7184, 7696, 8208, 8720, 9232, 9744, 10256, 10768, 11280, 11792, 12304, 12816, 13328, 13840, 14352, 14864, 15376, 15888, 16400, 16912, 17424, 17936, 18448, 18960
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The identity (2048*n^2+128*n+1)^2(16*n^2+n)*(512*n+16)^2=1 can be written as A157476(n)^2A157474(n)*a(n)^2=1 (see also second comment in A157476). [rewritten by Bruno Berselli, Aug 22 2011]


LINKS



FORMULA

a(1)=528, a(2)=1040, a(n) = 2*a(n1)a(n2).  Harvey P. Dale, Dec 07 2011


MATHEMATICA

512*Range[40]+16 (* or *) LinearRecurrence[{2, 1}, {528, 1040}, 40] (* Harvey P. Dale, Dec 07 2011 *)


CROSSREFS



KEYWORD

nonn,easy


AUTHOR



STATUS

approved



