|
|
A008918
|
|
Numbers k such that 4*k = (k written backwards), k > 0.
|
|
14
|
|
|
2178, 21978, 219978, 2199978, 21782178, 21999978, 217802178, 219999978, 2178002178, 2197821978, 2199999978, 21780002178, 21978021978, 21999999978, 217800002178, 217821782178, 219780021978, 219978219978, 219999999978, 2178000002178, 2178219782178
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
There are Fibonacci(floor((k-2)/2)) terms with k digits (this is essentially A103609). - Ray Chandler, Oct 12 2017
|
|
REFERENCES
|
D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986.
|
|
LINKS
|
N. J. A. Sloane, 2178 And All That, arXiv:1307.0453 [math.NT], 2013; Fib. Quart., 52 (2014), 99-120.
|
|
FORMULA
|
|
|
MATHEMATICA
|
Rest@Select[FromDigits /@ Tuples[{0, 198}, 11], IntegerDigits[4*#] == Reverse@IntegerDigits[#] &] (* Arkadiusz Wesolowski, Aug 14 2012 *)
okQ[t_]:=t==Reverse[t]&&First[t]!=0&&Min[Length/@Split[t]]>1; 198#&/@ Flatten[ Table[FromDigits/@Select[Tuples[{0, 1}, n], okQ], {n, 20}]] (* Harvey P. Dale, Jul 03 2013 *)
|
|
PROG
|
(PARI) rev(n) = (eval(concat(Vecrev(Str(n)))));
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|