login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008921
Coordination sequence for lattice {E_7}*.
1
1, 56, 938, 7688, 39746, 150248, 455114, 1171928, 2668610, 5521880, 10585514, 19068392, 32622338, 53439752, 84361034, 128991800, 191829890, 278402168, 395411114, 550891208, 754375106, 1017069608, 1352041418, 1774412696, 2301566402, 2953361432, 3752357546, 4724050088, 5897114498
OFFSET
0,2
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
FORMULA
G.f.: (1+x)*(1 +48*x +519*x^2 +1744*x^3 +1959*x^4 +624*x^5 +x^6)/(1-x)^7.
From G. C. Greubel, Sep 13 2019: (Start)
a(n) = 2*(5 -132*n +451*n^2 -480*n^3 +370*n^4 -108*n^5 +34*n^6)/5 for n>0, with a(0)=1.
E.g.f.: -1 + (10 +270*x +2070*x^2 +4200*x^3 +3000*x^4 +804*x^5 +68*x^6) * exp(x)/5. (End)
MAPLE
seq(`if`(n = 0, 1, 2*(34*n^6-108*n^5+370*n^4-480*n^3+451*n^2-132*n+5)/5 ), n = 0..30); # modified by G. C. Greubel, Sep 13 2019
MATHEMATICA
Table[If[n==0, 1, 2*(5 -132*n +451*n^2 -480*n^3 +370*n^4 -108*n^5 +34*n^6)/5], {n, 0, 30}] (* G. C. Greubel, Sep 13 2019 *)
PROG
(PARI) vector(30, n, m=n-1; if(m==0, 1, 2*(5 -132*m +451*m^2 -480*m^3 +370*m^4 -108*m^5 +34*m^6)/5) ) \\ G. C. Greubel, Sep 13 2019
(Magma) [1] cat [2*(5 -132*n +451*n^2 -480*n^3 +370*n^4 -108*n^5 +34*n^6)/5: n in [1..30]]; // G. C. Greubel, Sep 13 2019
(Sage) [1]+[2*(5 -132*n +451*n^2 -480*n^3 +370*n^4 -108*n^5 +34*n^6)/5 for n in (1..30)] # G. C. Greubel, Sep 13 2019
(GAP) Concatenation([1], List([1..30], n-> 2*(5 -132*n +451*n^2 -480*n^3 +370*n^4 -108*n^5 +34*n^6)/5)); # G. C. Greubel, Sep 13 2019
CROSSREFS
Sequence in context: A338002 A351410 A219937 * A252181 A251432 A243206
KEYWORD
nonn
EXTENSIONS
More terms added by G. C. Greubel, Sep 13 2019
STATUS
approved