OFFSET
0,2
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
G.f.: (1+x)*(1 +48*x +519*x^2 +1744*x^3 +1959*x^4 +624*x^5 +x^6)/(1-x)^7.
From G. C. Greubel, Sep 13 2019: (Start)
a(n) = 2*(5 -132*n +451*n^2 -480*n^3 +370*n^4 -108*n^5 +34*n^6)/5 for n>0, with a(0)=1.
E.g.f.: -1 + (10 +270*x +2070*x^2 +4200*x^3 +3000*x^4 +804*x^5 +68*x^6) * exp(x)/5. (End)
MAPLE
seq(`if`(n = 0, 1, 2*(34*n^6-108*n^5+370*n^4-480*n^3+451*n^2-132*n+5)/5 ), n = 0..30); # modified by G. C. Greubel, Sep 13 2019
MATHEMATICA
Table[If[n==0, 1, 2*(5 -132*n +451*n^2 -480*n^3 +370*n^4 -108*n^5 +34*n^6)/5], {n, 0, 30}] (* G. C. Greubel, Sep 13 2019 *)
PROG
(PARI) vector(30, n, m=n-1; if(m==0, 1, 2*(5 -132*m +451*m^2 -480*m^3 +370*m^4 -108*m^5 +34*m^6)/5) ) \\ G. C. Greubel, Sep 13 2019
(Magma) [1] cat [2*(5 -132*n +451*n^2 -480*n^3 +370*n^4 -108*n^5 +34*n^6)/5: n in [1..30]]; // G. C. Greubel, Sep 13 2019
(Sage) [1]+[2*(5 -132*n +451*n^2 -480*n^3 +370*n^4 -108*n^5 +34*n^6)/5 for n in (1..30)] # G. C. Greubel, Sep 13 2019
(GAP) Concatenation([1], List([1..30], n-> 2*(5 -132*n +451*n^2 -480*n^3 +370*n^4 -108*n^5 +34*n^6)/5)); # G. C. Greubel, Sep 13 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms added by G. C. Greubel, Sep 13 2019
STATUS
approved