OFFSET
0,3
COMMENTS
Number of partitions of n+2 with exactly one even part. - Vladeta Jovovic, Sep 10 2003
Also, number of partitions of n with at most one even part. - Vladeta Jovovic, Sep 10 2003
Also total number of parts, counted without multiplicity, in all partitions of n into odd parts, offset 1. - Vladeta Jovovic, Mar 27 2005
a(n) = Sum_{k>=1} k*A116674(n+1,k). - Emeric Deutsch, Feb 22 2006
Equals row sums of triangle A173305. - Gary W. Adamson, Feb 15 2010
Equals partial sums of A025147 (observed by Jonathan Vos Post, proved by several correspondents).
Conjecture: The n-th derivative of Gamma(x+1) at x = 0 has a(n+1) terms. For example, d^4/dx^4_(x = 0) Gamma(x+1) = 8*eulergamma*zeta(3) + eulergamma^4 + eulergamma^2*Pi^2 + 3*Pi^4/20 which has a(5) = 4 terms. - David Ulgenes, Dec 05 2023
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
Cristina Ballantine and Mircea Merca, On identities of Watson type, Ars Mathematica Contemporanea (2019) Vol. 17, 277-290.
Kevin Beanland and Hung Viet Chu, On Schreier-type Sets, Partitions, and Compositions, arXiv:2311.01926 [math.CO], 2023.
P. Flajolet and B. Salvy, Euler sums and contour integral representations, Experimental Mathematics, Vol. 7 Issue 1 (1998).
J. Fulman, Random matrix theory over finite fields, Bull. Amer. Math. Soc. (N.S.), 39 (2002), no. 1, 51--85. MR1864086 (2002i:60012). See top of page 70, Eq. 2, with k=1. - N. J. A. Sloane, Aug 31 2014
Rebekah Ann Gilbert, A Fine Rediscovery, 2014.
Amrik Singh Nimbran and Paul Levrie, Series of the form Sum {a_n*binomial(2n, n)}, Math. Student (2023) Vol. 92, Nos. 3-4, 155-173. See pp. 10, 16.
FORMULA
a(n) = A000009(n) + a(n-2). - Vladeta Jovovic, Feb 10 2004
G.f.: 1/((1-x^2)*Product_{j>=1} (1 - x^(2*j-1))). - Emeric Deutsch, Feb 22 2006
From Vaclav Kotesovec, Aug 16 2015: (Start)
a(n) ~ (1/2) * A036469(n).
a(n) ~ 3^(1/4) * exp(Pi*sqrt(n/3)) / (4*Pi*n^(1/4)). (End)
Euler transform of the sequence [1, 1, period(1, 0)] (A266591). - Georg Fischer, Dec 04 2020
EXAMPLE
From Gus Wiseman, Sep 23 2019: (Start)
Also the number of integer partitions of n that are strict except possibly for any number of 1's. For example, the a(1) = 1 through a(7) = 11 partitions are:
(1) (2) (3) (4) (5) (6) (7)
(11) (21) (31) (32) (42) (43)
(111) (211) (41) (51) (52)
(1111) (311) (321) (61)
(2111) (411) (421)
(11111) (3111) (511)
(21111) (3211)
(111111) (4111)
(31111)
(211111)
(1111111)
(End)
MAPLE
f:=1/(1-x^2)/product(1-x^(2*j-1), j=1..32): fser:=series(f, x=0, 62): seq(coeff(fser, x, n), n=0..58); # Emeric Deutsch, Feb 22 2006
MATHEMATICA
mmax = 47; CoefficientList[ Series[ (1/(1-x^2))*Product[1/(1-x^(2m+1)), {m, 0, mmax}], {x, 0, mmax}], x] (* Jean-François Alcover, Jun 21 2011 *)
PROG
(SageMath) # uses[EulerTransform from A166861]
def g(n): return n % 2 if n > 2 else 1
a = EulerTransform(g)
print([a(n) for n in range(48)]) # Peter Luschny, Dec 04 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved