login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A233693 Expansion of q * psi(-q) * chi(-q^6) * psi(-q^9) / (phi(-q) * phi(-q^18)) in powers of q where phi(), psi(), chi() are Ramanujan theta functions. 4
1, 1, 2, 3, 4, 6, 8, 11, 14, 18, 24, 30, 38, 48, 60, 75, 92, 114, 140, 170, 208, 252, 304, 366, 439, 526, 626, 744, 884, 1044, 1232, 1451, 1704, 1998, 2336, 2730, 3182, 3700, 4300, 4986, 5772, 6672, 7700, 8876, 10212, 11736, 13472, 15438, 17673, 20207, 23076 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015

Michael Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of eta(q^4) * eta(q^6) * eta(q^9) * eta(q^36)^2 / (eta(q) * eta(q^12) * eta(q^18)^3) in powers of q.

Euler transform of period 36 sequence [ 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, ...].

a(2*n) = A123629(n).

a(n) ~ exp(2*Pi*sqrt(n)/3) / (4*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Oct 13 2015

EXAMPLE

G.f. = q + q^2 + 2*q^3 + 3*q^4 + 4*q^5 + 6*q^6 + 8*q^7 + 11*q^8 + 14*q^9 + ...

MATHEMATICA

nmax=60; CoefficientList[Series[Product[(1-x^(4*k)) * (1-x^(6*k)) * (1-x^(9*k)) * (1+x^(18*k))^2 / ((1-x^k) * (1-x^(12*k)) * (1-x^(18*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 13 2015 *)

QP := QPochhammer; A233693[n_]:= SeriesCoefficient[QP[q^4]*QP[q^6] *QP[q^9]*QP[q^36]^2/(QP[q]* QP[q^12]*QP[q^18]^3), {q, 0, n}]; Table[A233693[n], {n, 0, 50}] (* G. C. Greubel, Dec 25 2017 *)

PROG

(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^4 + A) * eta(x^6 + A) * eta(x^9 + A) * eta(x^36 + A)^2 / (eta(x + A) * eta(x^12 + A) * eta(x^18 + A)^3), n))}

CROSSREFS

Cf. A123629.

Sequence in context: A062464 A053270 A261154 * A003412 A038348 A239467

Adjacent sequences:  A233690 A233691 A233692 * A233694 A233695 A233696

KEYWORD

nonn

AUTHOR

Michael Somos, Dec 14 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 27 06:18 EST 2022. Contains 350601 sequences. (Running on oeis4.)