login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233691
T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with every 2X2 subblock having the sum of the squares of the edge differences equal to 10 (10 maximizes T(1,1)), and no two adjacent values equal
9
32, 108, 108, 356, 548, 356, 1188, 2628, 2628, 1188, 3940, 13324, 19248, 13324, 3940, 13108, 64756, 145512, 145512, 64756, 13108, 43540, 327588, 1095164, 1723204, 1095164, 327588, 43540, 144740, 1596200, 8284072, 19588516, 19588516, 8284072
OFFSET
1,1
COMMENTS
Table starts
......32.......108.........356..........1188............3940..............13108
.....108.......548........2628.........13324...........64756.............327588
.....356......2628.......19248........145512.........1095164............8284072
....1188.....13324......145512.......1723204........19588516..........233101508
....3940.....64756.....1095164......19588516.......350631128.........6324816860
...13108....327588.....8284072.....233101508......6324816860.......180309108120
...43540...1596200....62569964....2662026560....113995582540......4934227972036
..144740...8064200...473123164...31690526268...2057970474012....140915217790172
..480964..39342364..3575792884..362156082980..37133987692488...3861307527285204
.1598548.198550888.27033634800.4311121344720.670381088418328.110305940795395912
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +5*a(n-2) -2*a(n-3)
k=2: [order 9]
k=3: [order 15]
k=4: [order 41]
k=5: [order 85]
EXAMPLE
Some solutions for n=3 k=4
..1..3..1..0..1....1..3..1..3..2....1..3..1..0..2....2..0..2..0..1
..0..2..0..2..0....0..2..0..2..0....0..2..3..1..3....3..2..3..1..3
..1..0..1..0..1....2..3..1..3..1....2..3..1..0..1....2..0..1..0..1
..0..2..0..2..3....0..1..0..1..2....0..2..3..2..3....3..2..3..2..0
CROSSREFS
Sequence in context: A167982 A063498 A173951 * A337786 A233684 A218068
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 14 2013
STATUS
approved