login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233695
a(n) gives the position of -n in the sequence (or tree) S generated in order by these rules: 0 is in S; if x is in S then x + 1 is in S; if nonzero x is in S then 1/x is in S; if x is in S, then i*x is in S; where duplicates are deleted as they occur.
4
10, 18, 30, 56, 109, 219, 450, 933, 1946, 4071, 8516, 17823, 37310, 78112, 163551, 342461, 717083, 1501509, 3144031, 6583341, 13784976
OFFSET
1,1
COMMENTS
It can be proved using the division algorithm for Gaussian integers that S is the set of Gaussian rational numbers: (b + c*i)/d, where b,c,d are integers and d is not 0.
Empirically, it appears that a(n) = A233694(n+2) + 7 for n > 2. It seems clear that positive integers appear for the first time at the start of a new level of the tree. If this is always the case, then the row starting with n will be followed by a row starting n+1, 1/n, ni, followed by a row starting n+2, 1/(n+1), (n+1)i, 1+1/n, n+1, i/(n+1), 1+ni, -i/n, -n. It may be possible to show that of these 9 values, only n+1 has ever appeared before. If so, then -n will always appear exactly 7 places after n + 2 in the sequence. - Jack W Grahl, Aug 10 2018
EXAMPLE
The first 16 numbers generated are as follows: 0, 1, 2, i, 3, 1/2, 2 i, 1 + i, -i, -1, 4, 1/3, 3 i, 3/2, i/2, 1 + 2 i. -1 appears in the 10th place, so a(1) = 10.
MATHEMATICA
Off[Power::infy]; x = {0}; Do[x = DeleteDuplicates[Flatten[Transpose[{x, x + 1, 1/x, I*x} /. ComplexInfinity -> 0]]], {18}]; On[Power::infy]; t1 = Flatten[Position[x, _?(IntegerQ[#] && NonNegative[#] &)]] (*A233694*)
t2 = Flatten[Position[x, _?(IntegerQ[#] && Negative[#] &)]] (* A233695 *)
t = Union[t1, t2] (* A233696 *)
(* Peter J. C. Moses, Dec 21 2013 *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Clark Kimberling, Dec 19 2013
EXTENSIONS
More terms by Jack W Grahl, Aug 10 2018
STATUS
approved