OFFSET
1,2
COMMENTS
It can be proved using the division algorithm for Gaussian integers that S is the set of Gaussian rational numbers: (b + c*i)/d, where b,c,d are integers and d is not 0.
EXAMPLE
The first 16 numbers generated are as follows: 0, 1, 2, i, 3, 1/2, 2 i, 1 + i, -i, -1, 4, 1/3, 3 i, 3/2, i/2, 1 + 2 i. Positions of integers 0, 1, 2, 3, -1, 4,... are 1,2,3,5,10,11,....
MATHEMATICA
Off[Power::infy]; x = {0}; Do[x = DeleteDuplicates[Flatten[Transpose[{x, x + 1, 1/x, I*x} /. ComplexInfinity -> 0]]], {18}]; On[Power::infy]; t1 = Flatten[Position[x, _?(IntegerQ[#] && NonNegative[#] &)]] (*A233694*)
t2 = Flatten[Position[x, _?(IntegerQ[#] && Negative[#] &)]] (*A233695*)
t = Union[t1, t2] (*A233696*)
(* Peter J. C. Moses, Dec 21 2013 *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Clark Kimberling, Dec 19 2013
EXTENSIONS
Definition and example corrected. - R. J. Mathar, May 06 2017
STATUS
approved