login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233696
Positions of integers in the sequence (or tree) S generated in order by these rules: 0 is in S; if x is in S then x + 1 is in S; if nonzero x is in S then 1/x is in S; if x is in S, then i*x is in S; where duplicates are deleted as they occur.
5
1, 2, 3, 5, 10, 11, 18, 23, 30, 49, 56, 102, 109, 212, 219, 443, 450, 926, 933, 1939, 1946, 4064, 4071, 8509, 8516, 17816, 17823, 37303, 37310, 78105, 78112, 163544, 163551
OFFSET
1,2
COMMENTS
It can be proved using the division algorithm for Gaussian integers that S is the set of Gaussian rational numbers: (b + c*i)/d, where b,c,d are integers and d is not 0.
EXAMPLE
The first 16 numbers generated are as follows: 0, 1, 2, i, 3, 1/2, 2 i, 1 + i, -i, -1, 4, 1/3, 3 i, 3/2, i/2, 1 + 2 i. Positions of integers 0, 1, 2, 3, -1, 4,... are 1,2,3,5,10,11,....
MATHEMATICA
Off[Power::infy]; x = {0}; Do[x = DeleteDuplicates[Flatten[Transpose[{x, x + 1, 1/x, I*x} /. ComplexInfinity -> 0]]], {18}]; On[Power::infy]; t1 = Flatten[Position[x, _?(IntegerQ[#] && NonNegative[#] &)]] (*A233694*)
t2 = Flatten[Position[x, _?(IntegerQ[#] && Negative[#] &)]] (*A233695*)
t = Union[t1, t2] (*A233696*)
(* Peter J. C. Moses, Dec 21 2013 *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Clark Kimberling, Dec 19 2013
EXTENSIONS
Definition and example corrected. - R. J. Mathar, May 06 2017
STATUS
approved