login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A035945
Number of partitions of n into parts not of the form 11k, 11k+2 or 11k-2. Also number of partitions with 1 part of size 1 and differences between parts at distance 4 are greater than 1.
0
1, 1, 2, 3, 4, 6, 8, 11, 14, 19, 24, 32, 40, 51, 65, 82, 101, 127, 156, 193, 236, 289, 350, 427, 514, 620, 744, 893, 1064, 1271, 1508, 1790, 2116, 2500, 2942, 3464, 4060, 4758, 5560, 6494, 7560, 8801, 10216, 11852, 13720, 15870, 18317, 21133, 24328
OFFSET
1,3
COMMENTS
Case k=5,i=2 of Gordon Theorem.
REFERENCES
G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.
FORMULA
a(n) ~ sin(2*Pi/11) * sqrt(2) * exp(4*Pi*sqrt(n/33)) / (3^(1/4) * 11^(3/4) * n^(3/4)). - Vaclav Kotesovec, Nov 21 2015
MATHEMATICA
nmax = 60; Rest[CoefficientList[Series[Product[1 / ((1 - x^(11*k-1)) * (1 - x^(11*k-3)) * (1 - x^(11*k-4)) * (1 - x^(11*k-5)) * (1 - x^(11*k-6)) * (1 - x^(11*k-7)) * (1 - x^(11*k-8)) * (1 - x^(11*k-10)) ), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Nov 21 2015 *)
CROSSREFS
Sequence in context: A003412 A038348 A239467 * A094707 A353864 A303663
KEYWORD
nonn,easy
STATUS
approved