OFFSET
1,3
COMMENTS
LINKS
Alois P. Heinz, Rows n = 1..1000, flattened
FORMULA
G.f.: product(1+tx^(2j-1)/(1-x^(2j-1)), j=1..infinity).
EXAMPLE
T(9,2)=4 because the only partitions of 9 into odd parts and having 2 distinct parts are [7,1,1],[5,1,1,1,1],[3,3,1,1,1] and [3,1,1,1,1,1,1].
Triangle starts:
1;
1;
2;
1,1;
2,1;
2,2;
2,3;
MAPLE
g:=product(1+t*x^(2*j-1)/(1-x^(2*j-1)), j=1..35): gser:=simplify(series(g, x=0, 34)): for n from 1 to 29 do P[n]:=coeff(gser, x^n) od: for n from 1 to 29 do seq(coeff(P[n], t, j), j=1..floor(sqrt(n))) od; # yields sequence in triangular form
# second Maple program:
with(numtheory):
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add(b(n-i*j, i-2)*`if`(j=0, 1, x), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(
b(n, iquo(n+1, 2)*2-1)):
seq(T(n), n=1..30); # Alois P. Heinz, Mar 08 2015
MATHEMATICA
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i<1, 0, Sum[b[n-i*j, i-2]*If[j == 0, 1, x], {j, 0, n/i}]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][b[n, Quotient[n+1, 2]*2-1]]; Table[T[n], {n, 1, 30}] // Flatten (* Jean-François Alcover, May 22 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
AUTHOR
Emeric Deutsch, Feb 22 2006
STATUS
approved