login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116675
Triangle read by rows: T(n,k) is the number of partitions of n into distinct part and having exactly k odd parts (n>=0, k>=0).
3
1, 0, 1, 1, 0, 0, 2, 1, 0, 1, 0, 3, 0, 2, 0, 2, 0, 5, 0, 2, 0, 4, 0, 7, 0, 1, 3, 0, 7, 0, 0, 10, 0, 2, 4, 0, 11, 0, 0, 14, 0, 4, 5, 0, 17, 0, 0, 19, 0, 8, 6, 0, 25, 0, 1, 0, 25, 0, 13, 0, 8, 0, 36, 0, 2, 0, 33, 0, 21, 0, 10, 0, 50, 0, 4, 0, 43, 0, 33, 0, 12, 0, 69, 0, 8, 0, 55, 0, 49, 0, 15, 0, 93, 0, 14
OFFSET
0,7
COMMENTS
Row n contains 1+floor(sqrt(n)) terms (at the end of certain rows there is an extra 0). Row sums yield A000009. T(n,0) = A035457(n) (n>=1); T(2n,0) = A000009(n), T(2n-1,0)=0. T(2n,1)=0, T(2n-1,1) = A036469(n). Sum(k*T(n,k), k>=0) = A116676(n).
LINKS
FORMULA
G.f.: product((1+tx^(2j-1))(1+x^(2j)), j=1..infinity).
EXAMPLE
T(8,2) = 4 because we have [7,1], [5,3], [5,2,1] and [4,3,1] ([8] and [6,2] do not qualify).
Triangle starts:
1;
0, 1;
1, 0;
0, 2;
1, 0, 1;
0, 3, 0;
MAPLE
g:=product((1+t*x^(2*j-1))*(1+x^(2*j)), j=1..25): gser:=simplify(series(g, x=0, 38)): P[0]:=1: for n from 1 to 26 do P[n]:=sort(coeff(gser, x^n)) od: for n from 0 to 26 do seq(coeff(P[n], t, j), j=0..floor(sqrt(n))) od; # yields sequence in triangular form
# second Maple program:
b:= proc(n, i) b(n, i):= `if`(n=0, [1], `if`(i<1, [], zip((x, y)->
x+y, b(n, i-1), `if`(i>n, [], [`if`(irem(i, 2)=0, [][], 0),
b(n-i, i-1)[]]), 0)))
end:
T:= proc(n) local l; l:= b(n, n); l[], 0$(1+floor(sqrt(n))-nops(l)) end:
seq (T(n), n=0..30); # Alois P. Heinz, Nov 21 2012
MATHEMATICA
rows = 25; coes = CoefficientList[Product[(1+t*x^(2j-1))(1+x^(2j)), {j, 1, rows}], {x, t}][[1 ;; rows]]; MapIndexed[Take[#1, Floor[Sqrt[#2[[1]]-1]]+1]&, coes] // Flatten (* Jean-François Alcover, May 13 2015 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Feb 22 2006
STATUS
approved