Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 May 13 2015 05:09:52
%S 1,0,1,1,0,0,2,1,0,1,0,3,0,2,0,2,0,5,0,2,0,4,0,7,0,1,3,0,7,0,0,10,0,2,
%T 4,0,11,0,0,14,0,4,5,0,17,0,0,19,0,8,6,0,25,0,1,0,25,0,13,0,8,0,36,0,
%U 2,0,33,0,21,0,10,0,50,0,4,0,43,0,33,0,12,0,69,0,8,0,55,0,49,0,15,0,93,0,14
%N Triangle read by rows: T(n,k) is the number of partitions of n into distinct part and having exactly k odd parts (n>=0, k>=0).
%C Row n contains 1+floor(sqrt(n)) terms (at the end of certain rows there is an extra 0). Row sums yield A000009. T(n,0) = A035457(n) (n>=1); T(2n,0) = A000009(n), T(2n-1,0)=0. T(2n,1)=0, T(2n-1,1) = A036469(n). Sum(k*T(n,k), k>=0) = A116676(n).
%H Alois P. Heinz, <a href="/A116675/b116675.txt">Rows n = 0..750, flattened</a>
%F G.f.: product((1+tx^(2j-1))(1+x^(2j)), j=1..infinity).
%e T(8,2) = 4 because we have [7,1], [5,3], [5,2,1] and [4,3,1] ([8] and [6,2] do not qualify).
%e Triangle starts:
%e 1;
%e 0, 1;
%e 1, 0;
%e 0, 2;
%e 1, 0, 1;
%e 0, 3, 0;
%p g:=product((1+t*x^(2*j-1))*(1+x^(2*j)),j=1..25): gser:=simplify(series(g,x=0,38)): P[0]:=1: for n from 1 to 26 do P[n]:=sort(coeff(gser,x^n)) od: for n from 0 to 26 do seq(coeff(P[n],t,j),j=0..floor(sqrt(n))) od; # yields sequence in triangular form
%p # second Maple program:
%p b:= proc(n, i) b(n, i):= `if`(n=0, [1], `if`(i<1, [], zip((x, y)->
%p x+y, b(n, i-1), `if`(i>n, [], [`if`(irem(i,2)=0, [][], 0),
%p b(n-i, i-1)[]]), 0)))
%p end:
%p T:= proc(n) local l; l:= b(n, n); l[], 0$(1+floor(sqrt(n))-nops(l)) end:
%p seq (T(n), n=0..30); # _Alois P. Heinz_, Nov 21 2012
%t rows = 25; coes = CoefficientList[Product[(1+t*x^(2j-1))(1+x^(2j)), {j, 1, rows}], {x, t}][[1 ;; rows]]; MapIndexed[Take[#1, Floor[Sqrt[#2[[1]]-1]]+1]&, coes] // Flatten (* _Jean-François Alcover_, May 13 2015 *)
%Y Cf. A000009, A035457, A036469, A116676.
%K nonn,tabf
%O 0,7
%A _Emeric Deutsch_, Feb 22 2006