login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035457
Number of partitions of n into parts of the form 4*k + 2.
41
1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 8, 0, 10, 0, 12, 0, 15, 0, 18, 0, 22, 0, 27, 0, 32, 0, 38, 0, 46, 0, 54, 0, 64, 0, 76, 0, 89, 0, 104, 0, 122, 0, 142, 0, 165, 0, 192, 0, 222, 0, 256, 0, 296, 0, 340, 0, 390, 0, 448, 0, 512, 0, 585, 0, 668, 0, 760, 0, 864, 0, 982, 0
OFFSET
0,7
COMMENTS
Also number of partitions of n into distinct even parts. Example: a(10)=3 because we have [10],[8,2] and [6,4]. - Emeric Deutsch, Feb 22 2006
Also number of partitions of n into odd parts, each part occurring an even number of times. Example: a(10)=3 because we have [5,5], [3,3,1,1,1,1] and [1,1,1,1,1,1,1,1,1,1]. - Emeric Deutsch, Apr 08 2006
LINKS
FORMULA
G.f.: 1/Product_{n>=0} (1 - x^(4*n+2)).
G.f.: 1/Product_{j>=0} (1 - x^(8*j+2))*(1 - x^(8*j+6)).
G.f.: Product_{j>=1} (1 + x^(2*j)). - Emeric Deutsch, Feb 22 2006
a(2*n-1) = 0, a(2*n) = A000009(n). a(n) = A116675(n,0). - Emeric Deutsch, Feb 22 2006
G.f.: Sum_{n>=1} (x^(n*(n+1)) / Product_{k=1..n} (1 - x^(2*k))). - Joerg Arndt, Mar 10 2011
If n is even, a(n) ~ exp(Pi*sqrt(n/6)) / (2^(5/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Feb 26 2015
a(4*n) = A035294(n) and a(4*n+2) = A078408(n). - George Beck, Aug 19 2017
EXAMPLE
a(10)=3 because we have [10], [6,2,2] and [2,2,2,2,2].
MAPLE
g:=product(1+x^(2*j), j=1..45): gser:=series(g, x=0, 85): seq(coeff(gser, x, n), n=0..79); # Emeric Deutsch, Feb 22 2006; a(0) added by Georg Fischer, Dec 10 2020
MATHEMATICA
nn=80; CoefficientList[Series[Product[1+ x^(2i), {i, 1, nn}], {x, 0, nn}], x] (* Geoffrey Critzer, Jun 20 2014 *)
nmax = 50; kmax = nmax/4; s = Range[0, kmax]*4 + 2;
Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 03 2020 *)
PROG
(PARI)
N=166; S=2+sqrtint(N); x='x+O('x^N);
gf=sum(n=0, S, x^(n^2+n)/prod(k=1, n, 1-x^(2*k)) );
Vec(gf)
\\ Joerg Arndt, Feb 18 2014
CROSSREFS
Sequence in context: A128619 A008613 A165685 * A005868 A035455 A029191
KEYWORD
nonn
EXTENSIONS
More terms from Emeric Deutsch, Feb 22 2006
Description simplified by Joerg Arndt, Jun 24 2009
a(0)=1 prepended by Joerg Arndt, Mar 11 2011
STATUS
approved