login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035460
Number of partitions of n into parts 8k+3 or 8k+5.
1
1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 2, 1, 2, 2, 2, 3, 2, 3, 4, 3, 5, 5, 4, 7, 6, 7, 9, 7, 10, 11, 10, 14, 13, 14, 18, 16, 20, 22, 21, 27, 26, 29, 34, 32, 39, 41, 41, 51, 49, 54, 63, 60, 71, 76, 76, 90, 91, 98, 111, 110, 125, 133, 137, 157, 159, 172, 191, 192, 216, 229, 235, 266, 272
OFFSET
0,12
LINKS
FORMULA
Expansion of f(-x^8) / f(-x^3, -x^5) in powers of x where f() is a Ramanujan theta function. - Michael Somos, Jun 03 2014
Euler transform of period 8 sequence [ 0, 0, 1, 0, 1, 0, 0, 0, ...]. - Michael Somos, Jun 03 2014
a(n) ~ (3-2*sqrt(2))^(1/4) * exp(Pi*sqrt(n/6)) / (4 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 26 2015
EXAMPLE
G.f. = 1 + x^3 + x^5 + x^6 + x^8 + x^9 + x^10 + 2*x^11 + x^12 + 2*x^13 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1 / QPochhammer[ x^3, x^8] / QPochhammer[ x^5, x^8], {x, 0, n}]; (* Michael Somos, Jun 03 2014 *)
nmax = 100; CoefficientList[Series[Product[1/((1 - x^(8k+3))*(1 - x^(8k+5))), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 26 2015 *)
nmax = 60; kmax = nmax/8;
s = Flatten[{Range[0, kmax]*8 + 3}~Join~{Range[0, kmax]*8 + 5}];
Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 04 2020 *)
PROG
(PARI) a(n)=if(n<0, 0, polcoeff(1/prod(k=1, n, 1-(k%8==3||k%8==5)*x^k, 1+x*O(x^n)), n))
CROSSREFS
Cf. A035691.
Sequence in context: A008677 A036497 A211976 * A261679 A147657 A029232
KEYWORD
nonn
STATUS
approved