login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035462
Number of partitions of n into parts 4k-1.
10
1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 1, 2, 3, 2, 2, 4, 4, 3, 4, 5, 5, 5, 6, 7, 8, 7, 8, 11, 10, 10, 13, 14, 14, 15, 17, 19, 20, 20, 24, 27, 26, 28, 33, 35, 35, 39, 44, 46, 48, 52, 58, 62, 63, 69, 78, 80, 83, 93, 100, 104, 111, 120, 130, 137, 143, 156, 169, 175, 185, 203
OFFSET
0,15
COMMENTS
Also, number of partitions into parts 8k+3 or 8k+7.
Also number of partitions of n such that 2k-1 and 2k occur with the same multiplicity. Example: a(18)=3 because we have [8,7,2,1],[6,5,4,3] and [2,2,2,2,2,2,1,1,1,1,1,1]. It is easy to find a bijection between these partitions and those described in the definition. - Emeric Deutsch, Apr 05 2006
LINKS
James Mc Laughlin, Andrew V. Sills, Peter Zimmer, Rogers-Ramanujan-Slater Type Identities , arXiv:1901.00946 [math.NT]
FORMULA
G.f.: 1/Product_{j>=1} (1 - x^(4*j-1)). - Emeric Deutsch, Apr 05 2006
G.f.: Sum_{n>=0} (x^(3*n) / Product_{k=1..n} (1 - x^(4*k))) = 1 + Sum_{n>=0} (x^(4*n+3) / Product_{k>=n} (1 - x^(4*k+3))) = 1 + Sum_{n>=0} (x^(4*n+3) / Product_{k=0..n} (1 - x^(4*k+3))). - Joerg Arndt, Apr 08 2011
a(n) ~ Pi^(3/4) * exp(Pi*sqrt(n/6)) / (Gamma(1/4) * 2^(13/8) * 3^(3/8) * n^(7/8)) * (1 + (Pi/(96*sqrt(6)) - 21*sqrt(3/2)/(16*Pi)) / sqrt(n)). - Vaclav Kotesovec, Feb 26 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A050452(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017
From Peter Bala, Feb 02 2021: (Start)
G.f.: A(x) = Sum_{n >= 0} x^(n*(4*n-1))/Product_{k = 1..n} ( (1 - x^(4*k))*(1 - x^(4*k-1)) ). (Set z = x^3 and q = x^4 in Mc Laughlin et al., Section 1.3, Entry 7.)
Similarly, A(x) = Sum_{n >= 0} x^(n*(4*n+3))/( (1 - x^3)*Product_{k = 1..n} ((1 - x^(4*k))*(1 - x^(4*k+3))) ). (End)
EXAMPLE
a(18)=3 because we have [15,3],[11,7] and [3,3,3,3,3,3].
MAPLE
g:=1/product(1-x^(4*i-1), i=1..50): gser:=series(g, x=0, 80): seq(coeff(gser, x, n), n=1..75); # Emeric Deutsch, Apr 05 2006
MATHEMATICA
nmax = 100; CoefficientList[Series[Product[1/(1-x^(4*k+3)), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 26 2015 *)
nmax = 50; kmax = nmax/4; s = Range[0, kmax]*4 - 1;
Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 04 2020 *)
CROSSREFS
Cf. similar sequences of number of partitions of n into parts congruent to m-1 mod m: A000009 (m=2), A035386 (m=3), this sequence (m=4), A109700 (m=5), A109702 (m=6), A109708 (m=7).
Sequence in context: A237284 A294186 A294185 * A260414 A160735 A216338
KEYWORD
nonn,easy
EXTENSIONS
Offset changed by N. J. A. Sloane, Apr 11 2010
STATUS
approved