login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036497
Number of partitions of n into distinct primes (counting 1 as a prime).
39
1, 1, 1, 2, 1, 2, 2, 2, 3, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 7, 7, 8, 8, 9, 10, 10, 11, 11, 11, 13, 13, 15, 16, 16, 18, 18, 20, 22, 22, 24, 25, 26, 29, 30, 32, 33, 34, 37, 39, 41, 44, 45, 47, 51, 53, 57, 59, 61, 64, 67, 72, 76, 79, 82, 86, 89, 95, 100, 103, 108, 112, 118
OFFSET
0,4
COMMENTS
Honsberger shows that the primes-including-1 are a complete sequence and therefore all numbers in this sequence exceed zero. - Ron Knott, Aug 27 2016
Number of partitions of n into distinct noncomposite numbers. - Omar E. Pol, Dec 14 2024
REFERENCES
Ross Honsberger, Mathematical Gems III, The Mathematical Association of America, 1985, pages 127-128.
LINKS
FORMULA
G.f.: (1 + x)*Product_{k>=1} (1 + x^prime(k)). - Ilya Gutkovskiy, Dec 31 2016
EXAMPLE
a(11) = 3 since 11 = 1+2+3+5=1+3+7 has 3 partitions of distinct primes-including-1. - Ron Knott, Aug 27 2016
MAPLE
s:= proc(n) option remember;
`if`(n<1, n+1, ithprime(n)+s(n-1))
end:
b:= proc(n, i) option remember; (p-> `if`(n=0, 1,
`if`(n>s(i), 0, b(n, i-1)+ `if`(p>n, 0,
b(n-p, i-1)))))(`if`(i<1, 1, ithprime(i)))
end:
a:= n-> b(n, numtheory[pi](n)):
seq(a(n), n=0..100); # Alois P. Heinz, Aug 27 2016
MATHEMATICA
myprime[ n_ ] := If[ n===0, 1, Prime[ n ] ]; ta1=Table[ Product[ 1+z^myprime[ k ], {k, 0, n} ]~CoefficientList~z, {n, 31, 32} ]; leveled=Count[ Take[ Last@ta1, Length@ta1[ [ -2 ] ] ]-ta1[ [ -2 ] ], 0 ]; Take[ Last@ta1, leveled ]
Table[Length@ DeleteCases[DeleteCases[IntegerPartitions@ n, {___, a_, ___} /; CompositeQ@ a], w_ /; MemberQ[Differences@ w, 0]], {n, 0, 60}] (* Michael De Vlieger, Aug 27 2016 *)
CROSSREFS
Sequence in context: A230502 A280253 A008677 * A211976 A035460 A261679
KEYWORD
nonn
AUTHOR
Wouter Meeussen, Dec 17 1998
STATUS
approved