login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036498
Numbers of the form m*(6*m-1) and m*(6*m+1), where m is an integer.
11
0, 5, 7, 22, 26, 51, 57, 92, 100, 145, 155, 210, 222, 287, 301, 376, 392, 477, 495, 590, 610, 715, 737, 852, 876, 1001, 1027, 1162, 1190, 1335, 1365, 1520, 1552, 1717, 1751, 1926, 1962, 2147, 2185, 2380, 2420, 2625, 2667, 2882, 2926, 3151, 3197, 3432, 3480
OFFSET
1,2
COMMENTS
PartitionQ[ p ] is odd and contains an extra even partition; series term z^p in Product_{n>=1}(1-z^n) has coefficient (+1). - Wouter Meeussen
Numbers k such that the number of partitions of k into distinct parts with an even number of parts exceed by 1 the number of partitions of k into distinct parts with an odd number of parts. [See, e.g., the Freitag-Busam reference given under A036499, p. 410. - Wolfdieter Lang, Jan 18 2016]
In formal power series, A010815 = Product_{k>0}(1-x^k), ranks of coefficients 1 (A001318 = ranks of nonzero (1 or -1) in A010815 = ranks of odds terms in A000009).
FORMULA
a(n) = n(n+1)/6 for n=0 or 5 (mod 6).
a(n) = 1/8*(-1+(-1)^n+2*n)*(-3+(-1)^n+6*n) (see MATHEMATICA code).
G.f.: x^2*(5+2*x+5*x^2)/((1+x)^2*(1-x)^3). - Colin Barker, Apr 02 2012
a(1)=0, a(2)=5, a(3)=7, a(4)=22, a(5)=26, a(n)=a(n-1)+2*a(n-2)- 2*a(n-3)- a(n-4)+a(n-5). - Harvey P. Dale, Aug 13 2012
Bisections: a(2*k+1) = A001318(4*k) = k*(1+6*k) = A049453(k), k >= 0; a(2*k) = A001318(4*k-1) = k*(-1+6*k) = A049452(k), k >= 1. - Wolfdieter Lang, Jan 18 2016
From Amiram Eldar, Feb 13 2024: (Start)
Sum_{n>=2} 1/a(n) = 6 - sqrt(3)*Pi.
Sum_{n>=2} (-1)^n/a(n) = 4*log(2) + 3*log(3) - 6. (End)
MAPLE
p1 := n->n*(6*n-1): p2 := n->n*(6*n+1): S:={}: for n from 0 to 100 do S := S union {p1(n), p2(n)} od: S
MATHEMATICA
Table[ 1/8*(-1 + (-1)^k + 2*k)*(-3 + (-1)^k + 6*k), {k, 64} ]
CoefficientList[Series[x*(5+2*x+5*x^2)/((1+x)^2*(1-x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Apr 24 2012 *)
Rest[Flatten[{#(6#-1), #(6#+1)}&/@Range[0, 30]]] (* or *) LinearRecurrence[ {1, 2, -2, -1, 1}, {0, 5, 7, 22, 26}, 60] (* Harvey P. Dale, Aug 13 2012 *)
PROG
(PARI) \ps 5000; for(n=1, 5000, if(polcoeff(eta(x), n, x)==1, print1(n, ", ")))
(PARI) concat(0, Vec(x^2*(5+2*x+5*x^2)/((1+x)^2*(1-x)^3) + O(x^100))) \\ Altug Alkan, Jan 19 2016
(Magma) [1/8*(-1+(-1)^n+2*n)*(-3+(-1)^n+6*n): n in [1..50]]; // Vincenzo Librandi, Apr 24 2012
(Magma) /* By definition: */ A036498:=func<n | n*(6*n+1)>; [0] cat [A036498(n*m): m in [-1, 1], n in [1..25]]; // Bruno Berselli, Nov 13 2012
CROSSREFS
Union of A049452 and A049453.
Sequence in context: A162462 A165144 A084164 * A350193 A248086 A076409
KEYWORD
nonn,easy
EXTENSIONS
Better description from Claude Lenormand (claude.lenormand(AT)free.fr), Feb 12 2001
Additional comments and more terms from James A. Sellers, Feb 14 2001
STATUS
approved