OFFSET
1,2
COMMENTS
PartitionQ[ p ] is odd and contains an extra even partition; series term z^p in Product_{n>=1}(1-z^n) has coefficient (+1). - Wouter Meeussen
Numbers k such that the number of partitions of k into distinct parts with an even number of parts exceed by 1 the number of partitions of k into distinct parts with an odd number of parts. [See, e.g., the Freitag-Busam reference given under A036499, p. 410. - Wolfdieter Lang, Jan 18 2016]
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
FORMULA
a(n) = n(n+1)/6 for n=0 or 5 (mod 6).
a(n) = 1/8*(-1+(-1)^n+2*n)*(-3+(-1)^n+6*n) (see MATHEMATICA code).
G.f.: x^2*(5+2*x+5*x^2)/((1+x)^2*(1-x)^3). - Colin Barker, Apr 02 2012
a(1)=0, a(2)=5, a(3)=7, a(4)=22, a(5)=26, a(n)=a(n-1)+2*a(n-2)- 2*a(n-3)- a(n-4)+a(n-5). - Harvey P. Dale, Aug 13 2012
Bisections: a(2*k+1) = A001318(4*k) = k*(1+6*k) = A049453(k), k >= 0; a(2*k) = A001318(4*k-1) = k*(-1+6*k) = A049452(k), k >= 1. - Wolfdieter Lang, Jan 18 2016
From Amiram Eldar, Feb 13 2024: (Start)
Sum_{n>=2} 1/a(n) = 6 - sqrt(3)*Pi.
Sum_{n>=2} (-1)^n/a(n) = 4*log(2) + 3*log(3) - 6. (End)
MAPLE
p1 := n->n*(6*n-1): p2 := n->n*(6*n+1): S:={}: for n from 0 to 100 do S := S union {p1(n), p2(n)} od: S
MATHEMATICA
Table[ 1/8*(-1 + (-1)^k + 2*k)*(-3 + (-1)^k + 6*k), {k, 64} ]
CoefficientList[Series[x*(5+2*x+5*x^2)/((1+x)^2*(1-x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Apr 24 2012 *)
Rest[Flatten[{#(6#-1), #(6#+1)}&/@Range[0, 30]]] (* or *) LinearRecurrence[ {1, 2, -2, -1, 1}, {0, 5, 7, 22, 26}, 60] (* Harvey P. Dale, Aug 13 2012 *)
PROG
(PARI) \ps 5000; for(n=1, 5000, if(polcoeff(eta(x), n, x)==1, print1(n, ", ")))
(PARI) concat(0, Vec(x^2*(5+2*x+5*x^2)/((1+x)^2*(1-x)^3) + O(x^100))) \\ Altug Alkan, Jan 19 2016
(Magma) [1/8*(-1+(-1)^n+2*n)*(-3+(-1)^n+6*n): n in [1..50]]; // Vincenzo Librandi, Apr 24 2012
(Magma) /* By definition: */ A036498:=func<n | n*(6*n+1)>; [0] cat [A036498(n*m): m in [-1, 1], n in [1..25]]; // Bruno Berselli, Nov 13 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Better description from Claude Lenormand (claude.lenormand(AT)free.fr), Feb 12 2001
Additional comments and more terms from James A. Sellers, Feb 14 2001
STATUS
approved