login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248086
Sum of the eccentricities of all vertices in the Lucas cube Lambda(n).
0
0, 0, 5, 7, 22, 37, 81, 143, 276, 490, 895, 1578, 2802, 4894, 8547, 14797, 25560, 43919, 75267, 128525, 218930, 371920, 630465, 1066452, 1800612, 3034812, 5106881, 8580883, 14398426, 24129145, 40388085, 67527563, 112786512
OFFSET
0,3
COMMENTS
The vertex set of the Lucas cube Lambda(n) is the set of all binary strings of length n without consecutive 1's and without a 1 in the first and the last bit. Two vertices of the Lucas cube are adjacent if their strings differ in exactly one bit.
a(n) = Sum(k*A210572(n,k), k=0..n).
LINKS
A. Castro and M. Mollard, The eccentricity sequences of Fibonacci and Lucas cubes, Discrete Math., 312 (2012), 1025-1037.
S. Klavzar, M. Mollard, Asymptotic Properties of Fibonacci Cubes and Lucas Cubes, Annals of Combinatorics, 18, 2014, 447-457.
FORMULA
a(n) = n*F(n+1) + (-1)^n*(n - floor(n/2)), where F(n) = A000045(n) are the Fibonacci numbers; see the formula for e'_n on p. 450 of the Klavzar - Mollard reference.
G.f.: z^2*(5 + 2*z - 5*z^2 - 3*z^3)/((1 + z)*(1 - z^2)*(1 - z - z^2)^2).
EXAMPLE
a(2) = 5; indeed Lambda(2) is the path on 3 vertices with eccentricities 2, 1, 2.
a(3) = 7; indeed Lambda(3) is the star on 4 vertices with eccentricities 1, 2, 2, 2.
MAPLE
with(combinat): a := n -> n*fibonacci(n+1) + (-1)^n*(n-floor(n/2)); seq(a(n), n = 0 .. 40);
CROSSREFS
Sequence in context: A084164 A036498 A350193 * A076409 A294154 A260658
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Oct 01 2014
STATUS
approved