login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248089
a(n) = Sum_{k=0..floor(n/4)} binomial(n-k, 3k)*(-3)^(3k)*4^(n-4k).
0
1, 4, 16, 64, 229, 592, -224, -18176, -175655, -1265732, -7914560, -44970752, -236014307, -1145932664, -5086940240, -19929220352, -61944816911, -81359219468, 858917862064, 10785877546432, 84667993188757, 555461238134080, 3268576565244544, 17688312222825472, 88631554966652233, 408731119650234796
OFFSET
0,2
LINKS
P. S. Bruckman and G. C. Greubel, Advanced Problem H-725, Fibonacci Quarterly, 52(2):187-190, 2014.
FORMULA
a(n) = (9n + 7 + 3^(3n/2)*(11*sqrt(2)*cos(n*arcsin(sqrt(2/27))) + sin(n*arcsin(sqrt(2/27))))/sqrt(2))/18.
G.f.: (1-4x)^2/((1-4x)^3+27x^4) = (1-4*x)^2/((x-1)^2*(1 - 10*x + 27*x^2)).
MAPLE
Gser:=series((1-4*x)^2/((1-4*x)^3+27*x^4), x = 0, 35): seq(coeff(Gser, x, n), n = 0 .. 30);
MATHEMATICA
LinearRecurrence[{12, -48, 64, -27}, {1, 4, 16, 64}, 30] (* Harvey P. Dale, Nov 21 2015 *)
CROSSREFS
Sequence in context: A189336 A262334 A065738 * A248088 A294037 A228735
KEYWORD
sign,easy
AUTHOR
Emeric Deutsch, Oct 27 2014
STATUS
approved