|
|
A248091
|
|
Expansion of x^3*(1-2x-x^2-x^3+x^4+x^5)/((1+x)*(1-3x+x^2-x^3+3x^4)).
|
|
1
|
|
|
0, 0, 0, 1, 0, 1, 1, 3, 6, 16, 39, 101, 259, 670, 1732, 4485, 11613, 30079, 77910, 201812, 522763, 1354153, 3507775, 9086502, 23537592, 60971593, 157940361, 409127579, 1059801190, 2745301576, 7111410031, 18421346973
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,8
|
|
COMMENTS
|
a(n) = number of nonisomorphic n-element posets P such that if 1<=i<=n-1, then P has exactly 3 order ideals of cardinality i.
|
|
REFERENCES
|
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 2nd ed., 2012, Exercise 3.35c, p. 359.
|
|
LINKS
|
Table of n, a(n) for n=0..31.
Index entries for linear recurrences with constant coefficients, signature (2,2,0,-2,-3).
|
|
MAPLE
|
g := x^3*(x^5+x^4-x^3-x^2-2*x+1)/((x+1)*(3*x^4-x^3+x^2-3*x+1)): gser := series(g, x = 0, 45): seq(coeff(gser, x, n), n = 0 .. 40);
|
|
MATHEMATICA
|
CoefficientList[Series[x^3*(1 - 2 x - x^2 - x^3 + x^4 + x^5)/((1 + x) (1 - 3 x + x^2 - x^3 + 3 x^4)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Oct 28 2014 *)
|
|
CROSSREFS
|
Sequence in context: A143560 A279685 A001675 * A168317 A188442 A046211
Adjacent sequences: A248088 A248089 A248090 * A248092 A248093 A248094
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Emeric Deutsch, Oct 28 2014
|
|
STATUS
|
approved
|
|
|
|