login
A248094
The hyper-Wiener index of the hexagonal triangle T_n, defined in the He et al. reference.
1
0, 42, 444, 2187, 7443, 20247, 47313, 98994, 190386, 342576, 584034, 952149, 1494909, 2272725, 3360399, 4849236, 6849300, 9491814, 12931704, 17350287, 22958103, 29997891, 38747709, 49524198, 62685990, 78637260, 97831422, 120774969, 148031457, 180225633, 218047707
OFFSET
0,2
LINKS
Q. H. He, J. Z. Gu, S. J. Xu, and W. H. Chan, Hosoya polynomials of hexagonal triangles and trapeziums, MATCH, Commun. Math. Comput. Chem. 72, 2014, 835-843.
FORMULA
a(n) = n*(66 + 407n + 670n^2 + 425n^3 + 104n^4 + 8n^5)/40 (see Corollary 3,10 in the He et al. reference).
G.f.: z*(42+150*z-39*z^2-12*z^3+3*z^4) /(1-z)^7. (Corrected by Vincenzo Librandi, Nov 15 2014)
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 6. - Wesley Ivan Hurt, Aug 16 2016
MAPLE
a := n -> (1/40)*n*(66 + 407*n + 670*n^2 + 425*n^3 + 104*n^4 + 8*n^5): seq(a(n), n = 0 .. 30);
MATHEMATICA
CoefficientList[Series[x (42 + 150 x - 39 x^2 - 12 x^3 + 3 x^4) / (1 - x)^7, {x, 0, 30}], x] (* Vincenzo Librandi, Nov 15 2014 *)
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 42, 444, 2187, 7443, 20247, 47313}, 40] (* Harvey P. Dale, Oct 22 2022 *)
PROG
(Magma) [n*(66+407*n+670*n^2+425*n^3+104*n^4+8*n^5)/40: n in [0..30]]; // Vincenzo Librandi, Nov 15 2014
CROSSREFS
Sequence in context: A230933 A231110 A156762 * A244909 A090297 A008387
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Nov 14 2014
STATUS
approved