login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090297
a(n) = K_5(n) = Sum_{k>=0} A090285(5,k)*2^k*binomial(n,k). a(n) = 2*(2*n^5+45*n^4+360*n^3+1215*n^2+1528*n+315)/15.
1
42, 462, 1586, 3958, 8330, 15694, 27314, 44758, 69930, 105102, 152946, 216566, 299530, 405902, 540274, 707798, 914218, 1165902, 1469874, 1833846, 2266250, 2776270, 3373874, 4069846, 4875818, 5804302, 6868722, 8083446, 9463818
OFFSET
0,1
COMMENTS
Values of polynomial K_5 related to A090285.
FORMULA
G.f.: (42+210*x-556*x^2+532*x^3-238*x^4+42*x^5)/(1-x)^6. [Colin Barker, Sep 18 2012]
MATHEMATICA
Table[(2*(2*n^5 + 45*n^4 + 360*n^3 + 1215*n^2 + 1528*n + 315)/15), {n, 0, 50}] (* Vincenzo Librandi, Sep 18 2012 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {42, 462, 1586, 3958, 8330, 15694}, 30] (* Harvey P. Dale, Apr 17 2020 *)
PROG
(Magma) [2*(2*n^5 + 45*n^4 + 360*n^3 + 1215*n^2 + 1528*n + 315)/15: n in [0..30]]; // Vincenzo Librandi, Sep 18 2012
CROSSREFS
Cf. A090285.
Sequence in context: A156762 A248094 A244909 * A008387 A088626 A328175
KEYWORD
easy,nonn
AUTHOR
Philippe Deléham, Jan 25 2004
EXTENSIONS
Corrected by T. D. Noe, Nov 09 2006
STATUS
approved