The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A008387 Coordination sequence for A_6 lattice. 3
 1, 42, 462, 2562, 9492, 27174, 65226, 137886, 264936, 472626, 794598, 1272810, 1958460, 2912910, 4208610, 5930022, 8174544, 11053434, 14692734, 19234194, 24836196, 31674678, 39944058, 49858158, 61651128, 75578370, 91917462, 110969082 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES R. Bacher, P. de la Harpe and B. Venkov, Series de croissance et series d'Ehrhart associees aux reseaux de racines, C. R. Acad. Sci. Paris, 325 (Series 1) (1997), 1137-1142. LINKS T. D. Noe, Table of n, a(n) for n = 0..1000 M. Baake and U. Grimm, Coordination sequences for root lattices and related graphs, arXiv:cond-mat/9706122, Zeit. f. Kristallographie, 212 (1997), 253-256. J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf). Index entries for linear recurrences with constant coefficients, signature (6, -15, 20, -15, 6, -1). FORMULA a(n) = S(n,6) = 7*n*(11*n+35*n+14)/10, with S(n,d) = sum_{k=0..d} binomial(d,k)^2*binomial(n-k+d-1,d-1). G.f.: (x^6+36*x^5+225*x^4+400*x^3+225*x^2+36*x+1)/(x-1)^6 = 1+42*x*(1+5*x+10*x^2+5*x^3+x^4)/(1-x)^6. [Colin Barker, Sep 26 2012] MAPLE 77/10*n^5+49/2*n^3+49/5*n; MATHEMATICA Join[{1}, LinearRecurrence[{6, -15, 20, -15, 6, -1}, {42, 462, 2562, 9492, 27174, 65226}, 30]] (* Jean-François Alcover, Jan 07 2019 *) CROSSREFS Sequence in context: A248094 A244909 A090297 * A088626 A328175 A216109 Adjacent sequences:  A008384 A008385 A008386 * A008388 A008389 A008390 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 01:46 EDT 2021. Contains 347596 sequences. (Running on oeis4.)