login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216109
The hyper-Wiener index of the ortho-polyphenyl chain with n hexagons (see the Dou et al. and the Deng references).
3
42, 477, 1701, 4254, 8820, 16227, 27447, 43596, 65934, 95865, 134937, 184842, 247416, 324639, 418635, 531672, 666162, 824661, 1009869, 1224630, 1471932, 1754907, 2076831, 2441124, 2851350, 3311217, 3824577, 4395426, 5027904, 5726295
OFFSET
0,1
COMMENTS
The Hosoya-Wiener polynomial of the graph is n(6+6t+6t^2+3t^3)+(1+2t+2t^2+t^3)^2*(t^{2n+1}-nt^3+nt-t)/(t^2-1)^2.
REFERENCES
Y. Dou, H. Bian, H. Gao, and H. Yu, The polyphenyl chains with extremal edge-Wiener indices, MATCH Commun. Math. Comput. Chem., 64, 2010, 757-766.
FORMULA
a(n) = 3*(28+123*n+127*n^2+36*n^3+4*n^4)/2 = 3*(n+1)(4*n^3+32*n^2+95*n+28)/2.
G.f.: -3*(33*x^3-88*x^2+89*x+14)/(x-1)^5. [Colin Barker, Oct 29 2012]
MAPLE
seq(3*n*(4*n^3+20*n^2+43*n-39)*(1/2), n=1..30);
MATHEMATICA
LinearRecurrence[{5, -10, 10, -5, 1}, {42, 477, 1701, 4254, 8820}, 30] (* Jean-François Alcover, Sep 23 2017 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Oct 26 2012
EXTENSIONS
First formula corrected by Colin Barker, Oct 29 2012
STATUS
approved