OFFSET
1,1
COMMENTS
The Hosoya-Wiener polynomial of the graph is n(6+6t+6t^2+3t^3)+(1+2t+2t^2+t^3)^2*(t^{3n+1}-nt^4+nt-t)/(t^3-1)^2.
REFERENCES
Y. Dou, H. Bian, H. Gao, and H. Yu, The polyphenyl chains with extremal edge-Wiener indices, MATCH Commun. Math. Comput. Chem., 64, 2010, 757-766.
LINKS
H. Deng, Wiener indices of spiro and polyphenyl hexagonal chains, arXiv:1006.5488
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
a(n) = 3*n*(-13+14*n+18*n^2+9*n^3)/2.
G.f.: -3*x*(9*x^3-4*x^2+89*x+14)/(x-1)^5. [Colin Barker, Oct 30 2012]
MAPLE
seq(3*n*(9*n^3+18*n^2+14*n-13)*(1/2), n=1..30);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Oct 26 2012
EXTENSIONS
Typo corrected in first formula by Colin Barker, Oct 30 2012
STATUS
approved