login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216114
The Wiener index of a link of n fullerenes C_{20} (see the Ghorbani and Hosseinzadeh reference).
1
500, 3400, 9900, 21200, 38500, 63000, 95900, 138400, 191700, 257000, 335500, 428400, 536900, 662200, 805500, 968000, 1150900, 1355400, 1582700, 1834000, 2110500, 2413400, 2743900, 3103200, 3492500, 3913000, 4365900, 4852400, 5373700, 5931000
OFFSET
1,1
COMMENTS
The Hosoya-Wiener polynomial of the graph is nw + r^2*(t^{3n+1}-nt^4+nt-t)/(t^3-1)^2, where w=20+30t+60t^2+60t^3+30t^4+10t^5 and r=1+3t+6t^2+6t^3+3t^4+t^5.
REFERENCES
M. Ghorbani and M. A. Hosseinzadeh, On Wiener index of special case of link fullerenes, Optoelectronics and advanced materials - Rapid Communications, 4, 2010, 538-539.
FORMULA
a(n) = 100*n*(2n^2 + 6n - 3).
G.f.: -100*x*(7*x^2-14*x-5)/(x-1)^4. [Colin Barker, Oct 31 2012]
MAPLE
seq(200*n^3+600*n^2-300*n, n=1..30);
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {500, 3400, 9900, 21200}, 30] (* Harvey P. Dale, Oct 20 2024 *)
CROSSREFS
Cf. A216115.
Sequence in context: A372864 A045215 A194085 * A005954 A333137 A281779
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Oct 28 2012
STATUS
approved