login
A216114
The Wiener index of a link of n fullerenes C_{20} (see the Ghorbani and Hosseinzadeh reference).
1
500, 3400, 9900, 21200, 38500, 63000, 95900, 138400, 191700, 257000, 335500, 428400, 536900, 662200, 805500, 968000, 1150900, 1355400, 1582700, 1834000, 2110500, 2413400, 2743900, 3103200, 3492500, 3913000, 4365900, 4852400, 5373700, 5931000
OFFSET
1,1
COMMENTS
The Hosoya-Wiener polynomial of the graph is nw + r^2*(t^{3n+1}-nt^4+nt-t)/(t^3-1)^2, where w=20+30t+60t^2+60t^3+30t^4+10t^5 and r=1+3t+6t^2+6t^3+3t^4+t^5.
REFERENCES
M. Ghorbani and M. A. Hosseinzadeh, On Wiener index of special case of link fullerenes, Optoelectronics and advanced materials - Rapid Communications, 4, 2010, 538-539.
FORMULA
a(n) = 100*n*(2n^2 + 6n - 3).
G.f.: -100*x*(7*x^2-14*x-5)/(x-1)^4. [Colin Barker, Oct 31 2012]
MAPLE
seq(200*n^3+600*n^2-300*n, n=1..30);
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {500, 3400, 9900, 21200}, 30] (* Harvey P. Dale, Oct 20 2024 *)
CROSSREFS
Cf. A216115.
Sequence in context: A372864 A045215 A194085 * A005954 A333137 A281779
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Oct 28 2012
STATUS
approved