Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Oct 20 2024 09:27:59
%S 500,3400,9900,21200,38500,63000,95900,138400,191700,257000,335500,
%T 428400,536900,662200,805500,968000,1150900,1355400,1582700,1834000,
%U 2110500,2413400,2743900,3103200,3492500,3913000,4365900,4852400,5373700,5931000
%N The Wiener index of a link of n fullerenes C_{20} (see the Ghorbani and Hosseinzadeh reference).
%C The Hosoya-Wiener polynomial of the graph is nw + r^2*(t^{3n+1}-nt^4+nt-t)/(t^3-1)^2, where w=20+30t+60t^2+60t^3+30t^4+10t^5 and r=1+3t+6t^2+6t^3+3t^4+t^5.
%D M. Ghorbani and M. A. Hosseinzadeh, On Wiener index of special case of link fullerenes, Optoelectronics and advanced materials - Rapid Communications, 4, 2010, 538-539.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F a(n) = 100*n*(2n^2 + 6n - 3).
%F G.f.: -100*x*(7*x^2-14*x-5)/(x-1)^4. [_Colin Barker_, Oct 31 2012]
%p seq(200*n^3+600*n^2-300*n,n=1..30);
%t LinearRecurrence[{4,-6,4,-1},{500,3400,9900,21200},30] (* _Harvey P. Dale_, Oct 20 2024 *)
%Y Cf. A216115.
%K nonn,easy
%O 1,1
%A _Emeric Deutsch_, Oct 28 2012