OFFSET
0,6
LINKS
Colin Barker, Table of n, a(n) for n = 0..950
Moussa Benoumhani, The Number of Topologies on a Finite Set, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.6.
Index entries for linear recurrences with constant coefficients, signature (55,-1320,18150,-157773,902055,-3416930,8409500,-12753576,10628640,-3628800).
FORMULA
a(n) = 25/6*5! Stirling2(n, 5) + 79/6*6! Stirling2(n, 6) + 29/2*7! Stirling2(n, 7) + 39/4*8! Stirling2(n, 8) + 4*9! Stirling2(n, 9) + 10! Stirling2(n, 10).
G.f.: 20*x^5*(25 - 526*x + 3413*x^2 + 292*x^3 - 72756*x^4 + 226800*x^5) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)*(1 - 6*x)*(1 - 7*x)*(1 - 8*x)*(1 - 9*x)*(1 - 10*x)). - Colin Barker, Jan 30 2017
PROG
(PARI) a(n) = 25*5!*stirling(n, 5, 2)/6 + 79*6!*stirling(n, 6, 2)/6 + 29*7!*stirling(n, 7, 2)/2 + 39*8!*stirling(n, 8, 2)/4 + 4*9!*stirling(n, 9, 2) + 10!*stirling(n, 10, 2) \\ Colin Barker, Jan 30 2017
(PARI) concat(vector(4), Vec(20*x^5*(25 - 526*x + 3413*x^2 + 292*x^3 - 72756*x^4 + 226800*x^5) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)*(1 - 6*x)*(1 - 7*x)*(1 - 8*x)*(1 - 9*x)*(1 - 10*x)) + O(x^30))) \\ Colin Barker, Jan 30 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Geoffrey Critzer, Jan 29 2017
STATUS
approved