login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281776
Number of distinct topologies on an n-set that have exactly 8 open sets.
8
0, 0, 0, 1, 54, 955, 11760, 122941, 1175034, 10595215, 91506420, 763624081, 6194818014, 49084747075, 381338401080, 2914184784421, 21965095364994, 163656285828535, 1207613518375740, 8838842878371961, 64253768864671974, 464416229729871595, 3340518964319750400
OFFSET
0,5
LINKS
Moussa Benoumhani, The Number of Topologies on a Finite Set, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.6.
Index entries for linear recurrences with constant coefficients, signature (28,-322,1960,-6769,13132,-13068,5040).
FORMULA
a(n) = Stirling2(n, 3) + 2*4! Stirling2(n, 4) + 15/4*5! Stirling2(n, 5) + 5/2*6! Stirling2(n, 6) + 7! Stirling2(n, 7).
From Colin Barker, Jan 30 2017: (Start)
a(n) = 13/4 - 19*2^(n-1) + 44*3^(n-1) - 2^(n-1)*3^(2+n) - 57*4^(n-1) + (39*5^n)/4 + 7^n for n>0.
G.f.: x^3*(1 + 26*x - 235*x^2 + 448*x^3 + 2100*x^4) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)*(1 - 6*x)*(1 - 7*x)).
(End)
PROG
(PARI) concat(vector(3), Vec(x^3*(1 + 26*x - 235*x^2 + 448*x^3 + 2100*x^4) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)*(1 - 6*x)*(1 - 7*x)) + O(x^30))) \\ Colin Barker, Jan 30 2017
CROSSREFS
The number of distinct topologies on an n-set with exactly k open sets for k=2..12 is given by A000012, A000918, A281773, A028244, A281774, A281775, A281776, A281777, A281778, A281779, A281780.
Sequence in context: A280479 A107420 A298069 * A160345 A324952 A298718
KEYWORD
nonn,easy
AUTHOR
Geoffrey Critzer, Jan 29 2017
STATUS
approved