login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281773
Number of distinct topologies on an n-set that have exactly 4 open sets.
9
0, 0, 1, 9, 43, 165, 571, 1869, 5923, 18405, 56491, 172029, 521203, 1573845, 4742011, 14266989, 42882883, 128812485, 386765131, 1160950749, 3484162963, 10455110325, 31370573851, 94122207309, 282387593443, 847204723365, 2541698056171, 7625261940669
OFFSET
0,4
LINKS
Moussa Benoumhani, The Number of Topologies on a Finite Set, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.6.
FORMULA
a(n) = A000392(n+1) + 3*A000392(n).
E.g.f.: (exp(x)-1)^3 + (exp(x)-1)^2/2!.
From Colin Barker, Jan 30 2017: (Start)
G.f.: x^2*(1 + 3*x)/((1 - x)*(1 - 2*x)*(1 - 3*x)).
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n>3.
a(n) = 2 - 5*2^(n-1) + 3^n for n>0. (End)
EXAMPLE
a(3) = 9 because we have: {{}, {c}, {a,b}, {a,b,c}} with 3 labelings and {{}, {c}, {b,c}, {a,b,c}} with 6 labelings.
MATHEMATICA
CoefficientList[Series[x^2*(1 + 3 x)/((1 - x) (1 - 2 x) (1 - 3 x)), {x, 0, 27}], x] (* Michael De Vlieger, Jan 21 2018 *)
PROG
(PARI) a(n) = stirling(n, 2, 2) + 3!*stirling(n, 3, 2) \\ Colin Barker, Jan 30 2017
(PARI) concat(vector(2), Vec(x^2*(1 + 3*x) / ((1 - x)*(1 - 2*x)*(1 - 3*x)) + O(x^30))) \\ Colin Barker, Jan 30 2017
CROSSREFS
The number of distinct topologies on an n-set with exactly k open sets for k=2..12 is given by A000012, A000918, A281773, A028244, A281774, A281775, A281776, A281777, A281778, A281779, A281780.
Partial sums are given in A298564.
Sequence in context: A244869 A259181 A330088 * A220676 A110125 A221751
KEYWORD
nonn,easy
AUTHOR
Submitted on behalf of Moussa Benoumhani by Geoffrey Critzer, Jan 29 2017
STATUS
approved